scholarly journals Scalarized Einstein–Maxwell-scalar black holes in anti-de Sitter spacetime

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Guangzhou Guo ◽  
Peng Wang ◽  
Houwen Wu ◽  
Haitang Yang

AbstractIn this paper, we study spontaneous scalarization of asymptotically anti-de Sitter charged black holes in an Einstein–Maxwell-scalar model with a non-minimal coupling between the scalar and Maxwell fields. In this model, Reissner–Nordström-AdS (RNAdS) black holes are scalar-free black hole solutions, and may induce scalarized black holes due to the presence of a tachyonic instability of the scalar field near the event horizon. For RNAdS and scalarized black hole solutions, we investigate the domain of existence, perturbative stability against spherical perturbations and phase structure. In a micro-canonical ensemble, scalarized solutions are always thermodynamically preferred over RNAdS black holes. However, the system has much richer phase structure and phase transitions in a canonical ensemble. In particular, we report a RNAdS BH/scalarized BH/RNAdS BH reentrant phase transition, which is composed of a zeroth-order phase transition and a second-order one.

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Feiyu Yao

AbstractIn this paper, we study the spontaneous scalarization of Reissner–Nordström (RN) black holes enclosed by a cavity in an Einstein–Maxwell-scalar (EMS) model with non-minimal couplings between the scalar and Maxwell fields. In this model, scalar-free RN black holes in a cavity may induce scalarized black holes due to the presence of a tachyonic instability of the scalar field near the event horizon. We calculate numerically the black hole solutions, and investigate the domain of existence, perturbative stability against spherical perturbations and phase structure. The scalarized solutions are always thermodynamically preferred over RN black holes in a cavity. In addition, a reentrant phase transition, composed of a zeroth-order phase transition and a second-order one, occurs for large enough electric charge Q.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950231 ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar

The phase structure of charged anti-de Sitter black hole in massive gravity is investigated using the unstable circular photon orbits formalism, concretely we establish a direct link between the null geodesics and the critical behavior thermodynamic of such black hole solution. Our analysis reveals that the radius and the impact parameter corresponding to the unstable circular orbits can be used to probe the thermodynamic phase structure. We also show that the latter are key quantities to characterize the order of Van der Waals-like phase transition. Namely, we found a critical exponent around [Formula: see text]. All these results support further that the photon trajectories can be used as a useful and crucial tool to probe the thermodynamic black holes criticality.


2014 ◽  
Vol 29 (18) ◽  
pp. 1450087
Author(s):  
Jie-Xiong Mo ◽  
Gu-Qiang Li ◽  
Wen-Biao Liu

In this paper, we further investigate the phase transitions of Born–Infeld AdS black holes in canonical ensemble. We take a different approach to investigate in detail the impact of the choice of parameters. Some interesting phase transition phenomena which has been ignored before are discovered. To examine the phase structure we find, we carry out the standard analysis of the behavior of free energy. We also apply the framework of geometrothermodynamics into Born–Infeld AdS black holes. It is shown that the Legendre invariant thermodynamic scalar curvature diverges exactly where the specific heat at constant charge diverges, which confirms the correctness of the phase structure we find. It is worth noting that although the phase structure shares similarity with RN-AdS black hole, it also has its unique characteristics due to influence of Born–Infeld electrodynamics.


2006 ◽  
Vol 21 (27) ◽  
pp. 2043-2054 ◽  
Author(s):  
YVES BRIHAYE ◽  
TERENCE DELSATE

Numerical arguments are presented for the existence of regular and black hole solutions of the Einstein–Skyrme equations with a positive cosmological constant. These classical configurations approach asymptotically the de Sitter spacetime. The main properties of the solutions and the differences with respect to the asymptotically flat ones are discussed. In particular our results suggest that, for a positive cosmological constant, the mass evaluated as timelike infinity in infinite. Special emphasis is set to de Sitter black holes Skyrmions which display two horizons.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250022 ◽  
Author(s):  
SUSHANT G. GHOSH

We find an exact nonstatic charged BTZ-like solutions, in (N+1)-dimensional Einstein gravity in the presence of negative cosmological constant and a nonlinear Maxwell field defined by a power s of the Maxwell invariant, which describes the gravitational collapse of charged null fluid in an anti-de Sitter background. Considering the situation that a charged null fluid injects into the initially an anti-de Sitter spacetime, we show that a black hole form rather than a naked singularity, irrespective of spacetime dimensions, from gravitational collapse in accordance with cosmic censorship conjecture. The structure and locations of the apparent horizons of the black holes are also determined. It is interesting to see that, in the static limit and when N = 2, one can retrieve 2+1 BTZ black hole solutions.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2169-2171 ◽  
Author(s):  
YUKINORI YASUI

This paper gives a brief review of recent results on higher dimensional black hole solutions. It is shown that the D-dimensional Kerr-NUT-de Sitter spacetime constructed by Chen-Lü-Pope is the only spacetime admitting a rank-2 conformal Killing-Yano tensor with a certain symmetry.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Chao Wu ◽  
Rui-Hong Yue

We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.


2016 ◽  
Vol 32 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Huai-Fan Li ◽  
Meng-Sen Ma ◽  
Ya-Qin Ma

We study the thermodynamic properties of Schwarzschild–de Sitter (SdS) black hole and Reissner–Nordström–de Sitter (RNdS) black hole in view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.


Sign in / Sign up

Export Citation Format

Share Document