scholarly journals Heavy + light pseudoscalar meson semileptonic transitions

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Zhen-Ni Xu ◽  
Zhu-Fang Cui ◽  
Craig D. Roberts ◽  
Chang Xu

AbstractA symmetry-preserving regularisation of a vector $$\times $$ × vector contact interaction (SCI) is used to deliver a unified treatment of semileptonic transitions involving $$\pi $$ π , K, $$D_{(s)}$$ D ( s ) , $$B_{(s,c)}$$ B ( s , c ) initial states. The framework is characterised by algebraic simplicity, few parameters, and the ability to simultaneously treat systems from Nambu–Goldstone modes to heavy+heavy mesons. Although the SCI form factors are typically somewhat stiff, the results are comparable with experiment and rigorous theory results. Hence, predictions for the five unmeasured $$B_{s,c}$$ B s , c branching fractions should be a reasonable guide. The analysis provides insights into the effects of Higgs boson couplings via current-quark masses on the transition form factors; and results on $$B_{(s)}\rightarrow D_{(s)}$$ B ( s ) → D ( s ) transitions yield a prediction for the Isgur–Wise function in fair agreement with contemporary data.

2015 ◽  
Vol 30 (27) ◽  
pp. 1550162 ◽  
Author(s):  
Qin Chang ◽  
Pan-Pan Li ◽  
Xiao-Hui Hu ◽  
Lin Han

Motivated by the experiments of heavy flavor physics at running LHC and upgrading SuperKEKB/Belle-II in the future, the nonleptonic [Formula: see text] [Formula: see text] weak decays are studied in this paper. The amplitudes are calculated with factorization approach, and the transition form factors [Formula: see text] are evaluated within BSW model. With the reasonable approximation [Formula: see text], our predictions of branching fractions are presented. Numerically, the CKM-favored tree-dominated [Formula: see text] and [Formula: see text] decays have the largest branching fractions of the order [Formula: see text], and hence will be firstly observed by forthcoming Belle-II experiment. However, most of the other decay modes have the branching fractions [Formula: see text] and thus are hardly to be observed soon. Besides, for the possible detectable [Formula: see text] decays with branching fractions [Formula: see text], some useful ratios, such as [Formula: see text], etc. are presented and discussed in detail.


2020 ◽  
Vol 234 ◽  
pp. 01008
Author(s):  
Andrzej Kupsc

I summarize recent experimental results for two photon production of mesons. These processes include the neutral pion, η and η′ transition form factors and two photon production of pseudoscalar meson pairs. In addition I discuss the related hadronic and radiative processes. All these processes are attracting attention of experiment and theory due their relevance for the hadronic light-by-light contribution to the muon anomalous magnetic moment.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Yu-Kuo Hsiao ◽  
Ling Yang ◽  
Chong-Chung Lih ◽  
Shang-Yuu Tsai

AbstractMore than ten $$\Omega _c^0$$ Ω c 0 weak decay modes have been measured with the branching fractions relative to that of $$\Omega ^0_c\rightarrow \Omega ^-\pi ^+$$ Ω c 0 → Ω - π + . In order to extract the absolute branching fractions, the study of $$\Omega ^0_c\rightarrow \Omega ^-\pi ^+$$ Ω c 0 → Ω - π + is needed. In this work, we predict $${{\mathcal {B}}}_\pi \equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\pi ^+)=(5.1\pm 0.7)\times 10^{-3}$$ B π ≡ B ( Ω c 0 → Ω - π + ) = ( 5.1 ± 0.7 ) × 10 - 3 with the $$\Omega _c^0\rightarrow \Omega ^-$$ Ω c 0 → Ω - transition form factors calculated in the light-front quark model. We also predict $${{\mathcal {B}}}_\rho \equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\rho ^+)=(14.4\pm 0.4)\times 10^{-3}$$ B ρ ≡ B ( Ω c 0 → Ω - ρ + ) = ( 14.4 ± 0.4 ) × 10 - 3 and $${{\mathcal {B}}}_e\equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-e^+\nu _e)=(5.4\pm 0.2)\times 10^{-3}$$ B e ≡ B ( Ω c 0 → Ω - e + ν e ) = ( 5.4 ± 0.2 ) × 10 - 3 . The previous values for $${{\mathcal {B}}}_\rho /{{\mathcal {B}}}_\pi $$ B ρ / B π have been found to deviate from the most recent observation. Nonetheless, our $${{\mathcal {B}}}_\rho /{{\mathcal {B}}}_\pi =2.8\pm 0.4$$ B ρ / B π = 2.8 ± 0.4 is able to alleviate the deviation. Moreover, we obtain $${{\mathcal {B}}}_e/{{\mathcal {B}}}_\pi =1.1\pm 0.2$$ B e / B π = 1.1 ± 0.2 , which is consistent with the current data.


1990 ◽  
Vol 237 (3-4) ◽  
pp. 527-530 ◽  
Author(s):  
Nathan Isgur ◽  
Mark B. Wise

2012 ◽  
Vol 67 (2) ◽  
pp. 418-423 ◽  
Author(s):  
S. Dubnicka ◽  
A.Z. Dubnickova ◽  
A. Liptaj

2006 ◽  
Vol 21 (04) ◽  
pp. 720-725 ◽  
Author(s):  
◽  
J. W. Negele ◽  
B. Bistrovic ◽  
R. G. Edwards ◽  
G. Fleming ◽  
...  

The structure of neutrons, protons, and other strongly interacting particles is now being calculated in full, unquenched lattice QCD with quark masses entering the chiral regime. This talk describes selected examples, including the nucleon axial charge, structure functions, electromagnetic form factors, the origin of the nucleon spin, the transverse structure of the nucleon, and the nucleon to Delta transition form factor.


2004 ◽  
Vol 126 ◽  
pp. 71-75 ◽  
Author(s):  
A.Z. Dubničková ◽  
S. Dubnička ◽  
G. Pancheri ◽  
R. Pekárik

Sign in / Sign up

Export Citation Format

Share Document