heavy mesons
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 33)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 258 ◽  
pp. 04004
Author(s):  
Glòria Montaña

We have developed a self-consistent theoretical approach to study the modification of the properties of heavy mesons in hot mesonic matter which takes into account chiral and heavy-quark spin-flavor symmetries. The heavylight meson-meson unitarized scattering amplitudes in coupled channels incorporate thermal corrections by using the imaginary-time formalism, as well as the dressing of the heavy mesons with the self-energies. We report our results for the ground-state thermal spectral functions and the implications for the excited mesonic states generated dynamically in the heavy-light molecular model. We have applied these to the calculation of meson Euclidean correlators and transport coefficients for D mesons and summarize here our findings.


2021 ◽  
Vol 104 (11) ◽  
Author(s):  
Yizhuang Liu ◽  
Kiminad A. Mamo ◽  
Maciej A. Nowak ◽  
Ismail Zahed
Keyword(s):  

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Zhen-Ni Xu ◽  
Zhu-Fang Cui ◽  
Craig D. Roberts ◽  
Chang Xu

AbstractA symmetry-preserving regularisation of a vector $$\times $$ × vector contact interaction (SCI) is used to deliver a unified treatment of semileptonic transitions involving $$\pi $$ π , K, $$D_{(s)}$$ D ( s ) , $$B_{(s,c)}$$ B ( s , c ) initial states. The framework is characterised by algebraic simplicity, few parameters, and the ability to simultaneously treat systems from Nambu–Goldstone modes to heavy+heavy mesons. Although the SCI form factors are typically somewhat stiff, the results are comparable with experiment and rigorous theory results. Hence, predictions for the five unmeasured $$B_{s,c}$$ B s , c branching fractions should be a reasonable guide. The analysis provides insights into the effects of Higgs boson couplings via current-quark masses on the transition form factors; and results on $$B_{(s)}\rightarrow D_{(s)}$$ B ( s ) → D ( s ) transitions yield a prediction for the Isgur–Wise function in fair agreement with contemporary data.


Author(s):  
E.P. Inyang ◽  
E.P. Inyang ◽  
I.O. Akpan ◽  
J.E. Ntibi ◽  
E.S. William

Hulthen plus Hellmann potentials are adopted as the quark-antiquark interaction potential for studying the thermodynamic properties and the mass spectra of heavy mesons. We solved the radial Schrödinger equation analytically using the Nikiforov-Uvarov method. The energy eigenvalues and corresponding wave function in terms of Laguerre polynomials were obtained. The present results are applied for calculating the mass of heavy mesons such as charmoniumand cc and bottomonium bb, and thermodynamic properties such as the mean energy, the specific heat, the free energy, and the entropy. Four special cases were considered when some of the potential parameters were set to zero, resulting in Hellmann potential, Yukawa potential, Coulomb potential, and Hulthen potential, respectively. The present potential provides satisfying results in comparison with experimental data and the work of other researchers.


2021 ◽  
Vol 103 (9) ◽  
Author(s):  
G. López Castro ◽  
Néstor Quintero
Keyword(s):  

2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 482
Author(s):  
I. O. Akpan ◽  
E. P. Inyang ◽  
E. P Inyang ◽  
E. S. William

Hulthén plus Hellmann potentials are adopted as the quark-antiquark interaction potential for studying the mass spectra of heavy mesons. We solved the radial Schrödinger equation analytically using the Nikiforov-Uvarov method. The energy eigenvalues and corresponding wave function in terms of Laguerre polynomials were obtained. The present results are applied for calculating the mass of heavy mesons such as charmonium and bottomonium. Four special cases were considered when some of the potential parameters were set to zero, resulting into Hellmann potential, Yukawa potential, Coulomb potential, and Hulthén potential, respectively. The present potential provides satisfying results in comparison with experimental data and the work of other researchers.


Author(s):  
A. M. Yasser ◽  
T. A. Nahool ◽  
M. Anwar ◽  
C. Bowerman ◽  
G. A. Yahya

In this paper, we investigate the benefits of machine learning (ML) approaches in predicting the spectra of meson bound states. A linear model (LM) approach is used to predict the spectra of some heavy mesons. Our proposed method has been successfully reproduced in recent experiments, to validate known outcomes. Our results are compared favorably to those obtained using other techniques. This novel perspective opens up a new future in the use of ML in the field of particle physics.


Sign in / Sign up

Export Citation Format

Share Document