scholarly journals State-selective charge exchange cross sections in Be$$^{4+} -\hbox {H}(2\textit{lm})$$ collision based on the classical trajectory Monte Carlo method

2021 ◽  
Vol 75 (4) ◽  
Author(s):  
Iman Ziaeian ◽  
Károly Tőkési

Abstract A three-body classical trajectory Monte Carlo method is used to calculate the nl state-selective charge exchange cross sections in $$\hbox {Be}^{\mathrm {4+}}+$$ Be 4 + + H(2lm) collisions in the energy range between 10 and 200 keV/amu. We present partial cross sections for charge exchange into $$\hbox {Be}^{\mathrm {3+}}$$ Be 3 + (nl) $$(\textit{nl} = 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f)$$ ( nl = 2 s , 2 p , 3 s , 3 p , 3 d , 4 s , 4 p , 4 d , 4 f ) states as a function of impact energy. Our results are compared with the previous classical and quantum-mechanical results. We show that the classical treatment can able to describe reasonably well the charge exchange cross sections. Graphic abstract

Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 27
Author(s):  
I. Ziaeian ◽  
K. Tőkési

The interaction between Be4+ and hydrogen atom is studied using the three-body classical trajectory Monte Carlo method (CTMC) and the quasiclassical trajectory Monte Carlo method of Kirschbaum and Wilets (QTMC-KW). We present total cross sections for target ionization, target excitation, and charge exchange to the projectile bound states. Calculations are carried out in the projectile energy range between 10 and 1000 keV/au, relevant to the interest of fusion research when the target hydrogen atom is in the ground state. Our results are compared with previous theoretical results. We found that the classical treatment describes reasonably well the cross sections for various final channels. Moreover, we show that the calculations by the QTMC-KW model significantly improve the obtained cross sections.


Sign in / Sign up

Export Citation Format

Share Document