Method of describing the neutron cross sections in the resonant energy range on solving neutron-transfer problems by the Monte Carlo method

1987 ◽  
Vol 62 (3) ◽  
pp. 208-212
Author(s):  
P. A. Androsenko ◽  
T. A. Artem'eva
2018 ◽  
Vol 39 (4) ◽  
pp. 513-523 ◽  
Author(s):  
A. A. Danshin ◽  
M. I. Gurevich ◽  
V. A. Ilyin ◽  
A. A. Kovalishin ◽  
V. E. Velikhov

Author(s):  
Artem S. Bikeev ◽  
Yulia S. Daichenkova ◽  
Mikhail A. Kalugin ◽  
Denis Shkarovsky ◽  
Vladislav V. Shkityr

Abstract The main purpose of this work is to study the possibility of using the few-group approximation for calculation of some neutron-physical characteristics of VVER-1000 core by means of special version of MCU code. The Monte-Carlo method for VVER-1000 core neutron-physical characteristics calculation using the few-group approximation with an estimate of neutron cross sections “by location“ was provided and tested in this research. The reduction of calculation time due to the transition from a pointwise model of representation of cross sections to the few-group approximation and methodical error of this approach were evaluated. Optimal number of energy groups was determined. It was found that consideration of the scattering anisotropy leads to a significant decrease in methodical error. Ways of further reduction of methodical error were worked out.


2021 ◽  
Vol 75 (4) ◽  
Author(s):  
Iman Ziaeian ◽  
Károly Tőkési

Abstract A three-body classical trajectory Monte Carlo method is used to calculate the nl state-selective charge exchange cross sections in $$\hbox {Be}^{\mathrm {4+}}+$$ Be 4 + + H(2lm) collisions in the energy range between 10 and 200 keV/amu. We present partial cross sections for charge exchange into $$\hbox {Be}^{\mathrm {3+}}$$ Be 3 + (nl) $$(\textit{nl} = 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f)$$ ( nl = 2 s , 2 p , 3 s , 3 p , 3 d , 4 s , 4 p , 4 d , 4 f ) states as a function of impact energy. Our results are compared with the previous classical and quantum-mechanical results. We show that the classical treatment can able to describe reasonably well the charge exchange cross sections. Graphic abstract


1986 ◽  
Vol 108 (2) ◽  
pp. 264-270 ◽  
Author(s):  
M. H. N. Naraghi ◽  
B. T. F. Chung

The concept of multiple Markov chains is applied to the study of radiative heat transfer problems. A stochastic method for calculating radiative interchange in enclosures consisting of a number of isothermal surfaces with directional-bidirectional properties is developed. In this work, the Monte Carlo method is employed for calculating the multiple transition probabilities. Numerical examples have been presented to demonstrate the usefulness of the present approach.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
M.S. Al-Buriahi ◽  
Z.A. Alrowaili ◽  
Safa Ezzine ◽  
I.O. Olarinoye ◽  
Sultan Alomairy ◽  
...  

Abstract In this work, the Klein–Nishina (K–N) approach was used to evaluate the electronic, atomic, and energy-transfer cross sections of four elements, namely, zinc (Zn), tellurium (Te), barium (Ba), and bismuth (Bi), for different photon energies (0.662 MeV, 0.835 MeV, 1.170 MeV, 1.330 MeV, and 1.600 MeV). The obtained results were compared with the Monte Carlo method (Geant4 simulation) in terms of mass attenuation and mass energy-transfer coefficients. The results show that the K–N approach and Geant4 simulations are in good agreement for the entire energy range considered. As the photon energy increased from 0.662 MeV to 1.600 MeV, the values of the energy-transfer cross sections decreased from 81.135 cm2 to 69.184 cm2 in the case of Bi, from 50.832 cm2 to 43.344 cm2 for Te, from 54.742 cm2 to 46.678 cm2 for Ba, and from 29.326 cm2 to 25.006 cm2 for Zn. The obtained results and the detailed information of the attenuation properties for the studied elements would be helpful in developing a new generation of shielding materials against gamma rays.


2021 ◽  
pp. 86-90
Author(s):  
V.E. Kovtun ◽  
T.V. Malykhina

One of the main tasks of the electromagnetic calorimetry of the SPD setup is effective π0-γ separation in the energy range from 50 MeV to 10 GeV. Therefore, the current task is to optimize the design of the module cells in order to improve the physical parameters of the ECaL calorimeter. The Molière radius is determined in this work by the Monte Carlo method using Geant4 toolkit for various cell configurations of the calorimeter module. The results obtained in this work will be taken into account in the further development of the detecting systems of the ECaL SPD NICA.


Sign in / Sign up

Export Citation Format

Share Document