scholarly journals Molecular synthesis in ices triggered by dissociative electron attachment to carbon monoxide

2021 ◽  
Vol 75 (12) ◽  
Author(s):  
Fabian Schmidt ◽  
Martin Philipp Mues ◽  
Jan Hendrik Bredehöft ◽  
Petra Swiderek

Abstract Chemical reactions in mixed molecular ices as relevant in the context of astrochemistry can be initiated by electron-molecule interactions. Dissociative electron attachment (DEA) as initiating step is identified from the enhancement of product yields upon irradiation at particular electron energies. Herein, we show that DEA to CO leads to the formation of HCN in mixed CO/$$\hbox {NH}_{{3}}$$ NH 3 ice at electron energies around 11 eV and 16 eV. We propose that this reaction proceeds via insertion of the neutral C fragment into a N–H bond. In the case of CO/$$\hbox {H}_{{2}}$$ H 2 O and CO/$$\hbox {CH}_{{3}}$$ CH 3 OH ices, a resonant enhancement of the yields of HCOOH and $$\hbox {CH}_{{3}}$$ CH 3 OCHO, respectively, is observed around 10 eV. In both ices, both molecular constituents exhibit DEA processes in this energy range so that the energy-dependent product yield alone does not uniquely identify the relevant DEA channel. However, we demonstrate by comparing with earlier results on mixed ices where CO is replaced by $$\hbox {C}_{{2}}\hbox {H}_{{4}}$$ C 2 H 4 that DEA to CO is again responsible for the enhanced product formation. In this case, $$\hbox {O}^{\cdot -}$$ O · - activates $$\hbox {H}_{{2}}$$ H 2 O or $$\hbox {CH}_{{3}}$$ CH 3 OH which leads to the formation of larger products. We thus show that DEA to CO plays an important role in electron-induced syntheses in molecular ices. Graphical abstract

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiao-Fei Gao ◽  
Jing-Chen Xie ◽  
Hao Li ◽  
Xin Meng ◽  
Yong Wu ◽  
...  

AbstractThe cyanide anion (CN−) has been identified in cometary coma, interstellar medium, planetary atmosphere and circumstellar envelopes, but its origin and abundance are still disputed. An isolated CN− is stabilized in the vibrational states up to ν = 17 of the electronic ground-state 1Σ+, but it is not thought to survive in the electronic or vibrational states above the electron autodetachment threshold, namely, in superexcited states. Here we report the direct observation of long-lived CN− yields of the dissociative electron attachment to cyanogen bromide (BrCN), and confirm that some of the CN− yields are distributed in the superexcited vibrational states ν ≥ 18 (1Σ+) or the superexcited electronic states 3Σ+ and 3Π. The triplet state can be accessed directly in the impulsive dissociation of BrCN− or by an intersystem transition from the superexcited vibrational states of CN−. The exceptional stability of CN− in the superexcited states profoundly influences its abundance and is potentially related to the production of other compounds in interstellar space.


1998 ◽  
Vol 102 (41) ◽  
pp. 8037-8043 ◽  
Author(s):  
Dal Colle ◽  
Giuseppe Distefano ◽  
Alberto Modelli ◽  
Derek Jones ◽  
Maurizio Guerra ◽  
...  

2021 ◽  
Vol 23 (4) ◽  
pp. 2938-2952
Author(s):  
Maryam Ghiassee ◽  
Brandon C. Stevenson ◽  
P. B. Armentrout

Guided ion beam tandem mass spectrometry was used to measure the kinetic energy dependent product ion cross sections for reactions of the lanthanide metal praseodymium cation (Pr+) with O2, CO2, and CO and reactions of PrO+ with CO, O2, and Xe.


Sign in / Sign up

Export Citation Format

Share Document