Molecular Computation via Polymerase Strand Displacement Reactions

2021 ◽  
pp. 165-179
Author(s):  
Shalin Shah ◽  
Ming Yang ◽  
Tianqi Song ◽  
John Reif
ChemPhysChem ◽  
2021 ◽  
Author(s):  
Hui Lv ◽  
Qian Li ◽  
Jiye Shi ◽  
Fei Wang ◽  
Chunhai Fan

Nanoscale ◽  
2015 ◽  
Vol 7 (30) ◽  
pp. 12970-12978 ◽  
Author(s):  
Ismael Mullor Ruiz ◽  
Jean-Michel Arbona ◽  
Amitkumar Lad ◽  
Oscar Mendoza ◽  
Jean-Pierre Aimé ◽  
...  

Design and characterization of a DNA-based localized amplification circuit which, upon tethering on a DNA origami platform, greatly accelerates the catalytic response.


2016 ◽  
Vol 8 (37) ◽  
pp. 6701-6704 ◽  
Author(s):  
Chenxi Li ◽  
Ruoyun Lin ◽  
Tian Li ◽  
Feng Liu ◽  
Na Li

Binding-induced DNA strand-displacement reactions diversify the applications beyond nucleic acids and small molecules.


2017 ◽  
Vol 7 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Jonathan Lloyd ◽  
Claire H. Tran ◽  
Krishen Wadhwani ◽  
Christian Cuba Samaniego ◽  
Hari K. K. Subramanian ◽  
...  

2011 ◽  
Vol 8 (62) ◽  
pp. 1281-1297 ◽  
Author(s):  
Lulu Qian ◽  
Erik Winfree

The prospects of programming molecular systems to perform complex autonomous tasks have motivated research into the design of synthetic biochemical circuits. Of particular interest to us are cell-free nucleic acid systems that exploit non-covalent hybridization and strand displacement reactions to create cascades that implement digital and analogue circuits. To date, circuits involving at most tens of gates have been demonstrated experimentally. Here, we propose a simple DNA gate architecture that appears suitable for practical synthesis of large-scale circuits involving possibly thousands of gates.


2021 ◽  
Author(s):  
Samuel W Schaffter ◽  
Elizabeth Strychalski

Engineered molecular circuits that process information in biological systems could address emerging human health and biomanufacturing needs. However, such circuits can be difficult to rationally design and scale. DNA-based strand displacement reactions have demonstrated the largest and most computationally powerful molecular circuits to date but are limited in biological systems due to the difficulty in genetically encoding components. Here, we develop scalable co-transcriptional RNA strand displacement (ctRSD) circuits that are rationally programmed via base pairing interactions. ctRSD addresses the limitations of DNA-based strand displacement circuits by isothermally producing circuit components via transcription. We demonstrate the programmability of ctRSD in vitro by implementing logic and amplification elements, and multi-layer signaling cascades. Further, we show ctRSD kinetics are accurately predicted by a simple model of coupled transcription and strand displacement, enabling model-driven design. We envision ctRSD will enable rational design of powerful molecular circuits that operate in biological systems, including living cells.


Sign in / Sign up

Export Citation Format

Share Document