Uncertainty calculation in nanoflow measurements using interferometry

2022 ◽  
pp. 142-148
Author(s):  
E. Batista ◽  
A. Furtado ◽  
J. Pereira ◽  
I. Godinho ◽  
R. F. Martins
2021 ◽  
Vol 27 (1) ◽  
pp. 74-89
Author(s):  
Nicholas W.M. Ritchie

AbstractThis, the second in a series of articles present a new framework for considering the computation of uncertainty in electron excited X-ray microanalysis measurements, will discuss matrix correction. The framework presented in the first article will be applied to the matrix correction model called “Pouchou and Pichoir's Simplified Model” or simply “XPP.” This uncertainty calculation will consider the influence of beam energy, take-off angle, mass absorption coefficient, surface roughness, and other parameters. Since uncertainty calculations and measurement optimization are so intimately related, it also provides a starting point for optimizing accuracy through choice of measurement design.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 198
Author(s):  
Mar Lar Win

<p class="Abstract">In the gravimetric volume measurement method, the factor <em>Z</em> is generally used to facilitate an easy conversion from the apparent mass obtained using a balance to the liquid volume. The uncertainty of the measurement used for the liquid volume can be divided into two specific contributions: one from the components related to the mass measurements and one from those related to the mass-to-volume conversion. However, some ISO standards and calibration guides have suggested that the uncertainty due to the factor <em>Z</em> is generally neglected in the uncertainty calculation pertaining to gravimetric volume measurement. This paper describes the combined effects of the density of the water, the density of the reference weights, and the air buoyancy on the uncertainty of factor <em>Z</em> in terms of how they subsequently affect the uncertainty of the measurement results.</p>


2017 ◽  
Vol 17 ◽  
pp. 236-245
Author(s):  
V. V. Kozhevnikov

Today one of the priority problems is receiving an accreditation certificate under the international standard ISO/IEC 17025:2006 by measurement laboratories of Expert service subdivision of the Ministry of Internal Affairs of Ukraine. One of the requirements which is shown to the accredited testing laboratories, is a presence of uncertainty estimation procedure and ability to apply it. As the ballistic researches are one of the important directions of researches which are carried out in the expert subdivisions, therefore the paper is devoted to the consideration ofa question of uncertainty calculation in such measurements. In the mathematical statistics two types of paramètres which characterize dispersion of not correlated random variables are known: a root-mean-square deviation and a confidential interval. As the characteristics of uncertainty they are applied under the title standard and expanded uncertainty. An elementary estimation of measurements result and its uncertainty is carried out in such an order: description of the measured quantity; revealing of uncertainty sources; quantitative description uncertainty constituents (there are estimated uncertainty constituents which can be received a posteriori or a priori); calculation of standard uncertainty of each source, total standard uncertainty and expanded uncertainty. A posterior estimation is possible only in the case of carrying out multiple observations of the measured quantity (standard uncertainty of type A). An a priori estimation is carried out when multiple observations are not performed. In this case it’s necessary to use the information received from the measurements performed before, from the passport data on the facilities ofmeasuring technics orfrom reference books (standard uncertainty of type B). Short consideration of uncertainty concept, elucidation of the basic stages measurements result estimation and its uncertainty gives the chance to transform the theoretical knowledge into practical application of uncertainty estimation on examples of measurements uncertainty calculation during carrying out ballistic ammunition researches by two different ways.


2014 ◽  
Vol 23 ◽  
pp. 80-93 ◽  
Author(s):  
Joan-Albert Sanchez-Cabeza ◽  
Ana Carolina Ruiz-Fernández ◽  
Jorge Feliciano Ontiveros-Cuadras ◽  
Libia Hascibe Pérez Bernal ◽  
Carolina Olid

2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989544
Author(s):  
Ying Xie ◽  
Xingzhi Wang ◽  
Fangrui Mai

Owing to the limited accuracy and measurement uncertainty of the instruments installed in gas pipeline systems, it is impossible to completely avoid transmission loss during transportation of natural gas. This study established an uncertainty model for the measurement system determining the complex flow rates of trunk gas pipelines, analyzed the uncertainty calculation methods of different metering systems, and developed a calculation method for determining the theoretical transmission loss. Application showed that the theoretical transmission loss serves not only as an early warning regarding a transmission loss, but also as a guide to the pipeline enterprise for determining the transmission loss assessment index. If the actual transmission loss rate is smaller than the theoretical transmission loss rate during the calculation cycle, it means that the pipeline metering system is working normally. Otherwise, it is necessary to immediately investigate the reason behind the transmission loss and implement corresponding measures.


2020 ◽  
Vol 12 (9) ◽  
pp. 1481
Author(s):  
Olga Zawadzka-Manko ◽  
Iwona S. Stachlewska ◽  
Krzysztof M. Markowicz

Within the framework of the Satellite-based Monitoring Initiative for Regional Air quality (SAMIRA) project, the near-real-time (NRT) operation has been documented for an in-house developed algorithm used for the retrieval of aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat Second Generation (MSG). With the frequency of 15 min at a spatial resolution of roughly 5.5 × 5.5 km the AOD maps are provided for the country domains of Poland, the Czech Republic, Romania, and Southern Norway. A significant improvement has been reported in terms of modification of the existing prototype algorithm that it suits the operational NRT AOD retrieval for an extended area. This is mainly due to the application of the optimal interpolation method for the AOD estimation on reference days with the use of ground-based measurements of the Aerosol Robotic Network (AERONET) and the Aerosol Research Network (PolandAOD-NET) as well as simulations of the Copernicus Atmosphere Monitoring Service (CAMS). The main issues that have been addressed regarding surface reflectance estimation, cloud screening and uncertainty calculation. Exemplary maps of the NRT retrieval have been presented.


Sign in / Sign up

Export Citation Format

Share Document