INTERSECTING BRANE WORLDS ON K3 AND CALABI-YAU MANIFOLDS

Author(s):  
R. BLUMENHAGEN
2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Fernando Marchesano ◽  
Eran Palti ◽  
Joan Quirant ◽  
Alessandro Tomasiello

Abstract In this work we study ten-dimensional solutions to type IIA string theory of the form AdS4 × X6 which contain orientifold planes and preserve $$ \mathcal{N} $$ N = 1 supersymmetry. In particular, we consider solutions which exhibit some key features of the four-dimensional DGKT proposal for compactifications on Calabi-Yau manifolds with fluxes, and in this sense may be considered their ten-dimensional uplifts. We focus on the supersymmetry equations and Bianchi identities, and find solutions to these that are valid at the two-derivative level and at first order in an expansion parameter which is related to the AdS cosmological constant. This family of solutions is such that the background metric is deformed from the Ricci-flat one to one exhibiting SU(3) × SU(3)-structure, and dilaton gradients and warp factors are induced.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Magdalena Larfors ◽  
Davide Passaro ◽  
Robin Schneider

Abstract The systematic program of heterotic line bundle model building has resulted in a wealth of standard-like models (SLM) for particle physics. In this paper, we continue this work in the setting of generalised Complete Intersection Calabi Yau (gCICY) manifolds. Using the gCICYs constructed in ref. [1], we identify two geometries that, when combined with line bundle sums, are directly suitable for heterotic GUT models. We then show that these gCICYs admit freely acting ℤ2 symmetry groups, and are thus amenable to Wilson line breaking of the GUT gauge group to that of the standard model. We proceed to a systematic scan over line bundle sums over these geometries, that result in 99 and 33 SLMs, respectively. For the first class of models, our results may be compared to line bundle models on homotopically equivalent Complete Intersection Calabi Yau manifolds. This shows that the number of realistic configurations is of the same order of magnitude.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Ivano Basile ◽  
Stefano Lanza

Abstract We study de Sitter configurations in ten-dimensional string models where supersymmetry is either absent or broken at the string scale. To this end, we derive expressions for the cosmological constant in general warped flux compactifications with localized sources, which yield no-go theorems that extend previous works on supersymmetric cases. We frame our results within a dimensional reduction and connect them to a number of Swampland conjectures, corroborating them further in the absence of supersymmetry. Furthermore, we construct a top-down string embedding of de Sitter brane-world cosmologies within unstable anti-de Sitter landscapes, providing a concrete realization of a recently revisited proposal.


2007 ◽  
Author(s):  
László Á. Gergely ◽  
Zoltán Keresztes ◽  
Gyula M. Szabó ◽  
Arttu Rajantie ◽  
Carlo Contaldi ◽  
...  

2004 ◽  
Vol 13 (10) ◽  
pp. 2275-2279 ◽  
Author(s):  
J. A. R. CEMBRANOS ◽  
A. DOBADO ◽  
A. L. MAROTO

Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space–time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.


2007 ◽  
Vol 2007 (10) ◽  
pp. 091-091 ◽  
Author(s):  
Marco Billò ◽  
Marialuisa Frau ◽  
Igor Pesando ◽  
Paolo Di Vecchia ◽  
Alberto Lerda ◽  
...  
Keyword(s):  

Strings '90 ◽  
1991 ◽  
pp. 401-429
Author(s):  
PHILIP CANDELAS ◽  
XENIA C. DE LA OSSA

Sign in / Sign up

Export Citation Format

Share Document