Integral Formulas with Weight Factors

Author(s):  
Telemachos Hatziafratis

AbstractA Bochner-Martinelli-Koppelman type integral formula with weight factors is derived on complete intersection submanifolds of domains of Cn.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 81
Author(s):  
Shilpi Jain ◽  
Ravi P. Agarwal ◽  
Praveen Agarwal ◽  
Prakash Singh

A remarkably large number of unified integrals involving the Mittag–Leffler function have been presented. Here, with the same technique as Choi and Agarwal, we propose the establishment of two generalized integral formulas involving a multivariate generalized Mittag–Leffler function, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. We also present some interesting special cases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bingyin Hu ◽  
Anqi Lin ◽  
L. Catherine Brinson

AbstractThe inconsistency of polymer indexing caused by the lack of uniformity in expression of polymer names is a major challenge for widespread use of polymer related data resources and limits broad application of materials informatics for innovation in broad classes of polymer science and polymeric based materials. The current solution of using a variety of different chemical identifiers has proven insufficient to address the challenge and is not intuitive for researchers. This work proposes a multi-algorithm-based mapping methodology entitled ChemProps that is optimized to solve the polymer indexing issue with easy-to-update design both in depth and in width. RESTful API is enabled for lightweight data exchange and easy integration across data systems. A weight factor is assigned to each algorithm to generate scores for candidate chemical names and optimized to maximize the minimum value of the score difference between the ground truth chemical name and the other candidate chemical names. Ten-fold validation is utilized on the 160 training data points to prevent overfitting issues. The obtained set of weight factors achieves a 100% test accuracy on the 54 test data points. The weight factors will evolve as ChemProps grows. With ChemProps, other polymer databases can remove duplicate entries and enable a more accurate “search by SMILES” function by using ChemProps as a common name-to-SMILES translator through API calls. ChemProps is also an excellent tool for auto-populating polymer properties thanks to its easy-to-update design.


2018 ◽  
Vol 8 (7) ◽  
pp. 1201 ◽  
Author(s):  
Haigang Ding ◽  
Jiyun Zhao ◽  
Gang Cheng ◽  
Steve Wright ◽  
Yufeng Yao

A new leaking valve-pump parallel control (LVPC) oil hydraulic system is proposed to improve the performance of dynamic response of present variable speed pump control (VSPC) system, which is an oil hydraulic control system with saving energy. In the LVPC, a control valve is operating at leaking status, together with a variable speed pump, to regulate the system flow of hydraulic oil simultaneously. Therefore, the degree of valve control and pump control can be adjusted by regulating the valve-pump weight ratio. The LVPC system design, mathematical model development, system parameter and control performance analysis are carried out systematically followed by an experimental for validation process. Results have shown that after introducing the valve control, the total leakage coefficient increases significantly over a wide range with the operating point and this further increases damping ratios and reduces the velocity stiffness. As the valve-pump weight ratio determines the flow distribution between the valve and the pump and the weight factors of the valve and/or the pump controls determines the response speed of the LVPC system, thus if the weight factors are constrained properly, the LVPC system will eventually have a large synthetic open-loop gain and it will respond faster than the VSPC system. The LVPC will enrich the control schemes of oil hydraulic system and has potential value in application requiring of fast response.


2013 ◽  
Vol 88 (2) ◽  
pp. 179-197 ◽  
Author(s):  
Michal Šprlák ◽  
Josef Sebera ◽  
Miloš Val’ko ◽  
Pavel Novák

Sign in / Sign up

Export Citation Format

Share Document