INTERFACIAL STRUCTURES AND MECHANICAL PROPERTIES OF TITANIUM ALUMINIDES

Author(s):  
M. H. Yoo ◽  
M. Yamaguchi
1994 ◽  
Vol 185 (1-2) ◽  
pp. 17-24 ◽  
Author(s):  
X.D. Zhang ◽  
R.V. Ramanujan ◽  
T.A. Dean ◽  
M.H. Loretto

2006 ◽  
Vol 114 ◽  
pp. 29-38
Author(s):  
Gennady A. Salishchev ◽  
Renat M. Imayev ◽  
V.M. Imayev ◽  
M.R. Shagiev ◽  
F.H. Froes

1996 ◽  
Vol 460 ◽  
Author(s):  
W. O. Soboyejo ◽  
A. B. O. Soboyejo ◽  
Y. Ni ◽  
C. Mercer

In a recent paper, Mercer and Soboyejo [1] demonstrated the Hall-Petch dependence of basic room- and elevated-temperature (815°C) mechanical properties (0.2% offset strength), ultimate tensile strength, plastic elongation to failure and fracture toughness) on the average equiaxed/lamellar grain size. Simple Hall-Petch behavior was shown to occur in a wide range of extruded duplex α2-γ alloys (Ti-48A1, Ti-48Al-1.4Mn Ti-48Al-2Mn and Ti-48Al-1.5Cr). As in steels and other materials [2–5], simple Hall-Petch equations with were derived for the above properties [1]. However, the Hall-Petch equations did not include the effect of other variables that can affect to the basic mechanical properties of gamma alloys. Multiple linear regression equations for the prediction of the combined effects of several (alloying, microstructure and temperature) variables on basic mechanical properties temperature are presented in this paper.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (2) ◽  
pp. 82-91 ◽  
Author(s):  
William D. Nix

AbstractRecalling some of the progress that has been made in understanding the mechanical properties of materials over the past 50 years or so reveals the importance of remembering and applying old lessons when addressing new opportunities in materials research. Often, the classical lessons of the past are especially useful as a guide for thinking about new problems. Such an approach to new problems is intimately connected to the creation of simple models that capture the essential features of the phenomena involved. Experience shows that, although such efforts might not pay off immediately, they come to be useful many years later when new problems are confronted. The merit of applying old lessons to new problems is described herein by using examples from the author's career in characterizing and understanding the mechanical properties of materials. It is hoped that these lessons are sufficiently general to be applied to other areas of materials research. Problems ranging from the high-temperature creep resistance of titanium aluminides, to the residual stresses in deposited thin films, to diffusive relaxation processes in thin films, to the size dependence of the strength of crystalline materials at the nanometer scale, all provide examples of how applying lessons of the past can help to understand new problems. An effort is also made to identify new, emerging problems in materials research where the application of the lessons of the past, together with new capabilities of the future, can come together to produce a fresh understanding of material behavior.


Sign in / Sign up

Export Citation Format

Share Document