ANALYTIC STRUCTURE OF TWO-DIMENSIONAL QUANTUM FIELD THEORIES

Author(s):  
Philip Nelson
2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


1996 ◽  
Vol 05 (05) ◽  
pp. 569-587 ◽  
Author(s):  
LOWELL ABRAMS

We characterize Frobenius algebras A as algebras having a comultiplication which is a map of A-modules. This characterization allows a simple demonstration of the compatibility of Frobenius algebra structure with direct sums. We then classify the indecomposable Frobenius algebras as being either “annihilator algebras” — algebras whose socle is a principal ideal — or field extensions. The relationship between two-dimensional topological quantum field theories and Frobenius algebras is then formulated as an equivalence of categories. The proof hinges on our new characterization of Frobenius algebras. These results together provide a classification of the indecomposable two-dimensional topological quantum field theories.


1993 ◽  
Vol 08 (24) ◽  
pp. 2277-2283 ◽  
Author(s):  
ROGER BROOKS

The constraints of BF topological gauge theories are used to construct Hamiltonians which are anti-commutators of the BRST and anti-BRST operators. Such Hamiltonians are a signature of topological quantum field theories (TQFTs). By construction, both classes of topological field theories share the same phase spaces and constraints. We find that, for (2+1)- and (1+1)-dimensional space-times foliated as M=Σ × ℝ, a homomorphism exists between the constraint algebras of our TQFT and those of canonical gravity. The metrics on the two-dimensional hypersurfaces are also obtained.


2007 ◽  
Vol 16 (09) ◽  
pp. 1121-1163 ◽  
Author(s):  
AARON D. LAUDA ◽  
HENDRYK PFEIFFER

We present a state sum construction of two-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of Fukuma–Hosono–Kawai from triangulations of conventional two-dimensional cobordisms to those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that have a particular global structure. This construction reveals the topological interpretation of the associative algebra on which the state sum is based, as the vector space that the TQFT assigns to the unit interval. Extending the notion of a two-dimensional TQFT from cobordisms to suitable manifolds with corners therefore makes the relationship between the global description of the TQFT in terms of a functor into the category of vector spaces and the local description in terms of a state sum fully transparent. We also illustrate the state sum construction of an open-closed TQFT with a finite set of D-branes using the example of the groupoid algebra of a finite groupoid.


2017 ◽  
Vol 32 (03) ◽  
pp. 1730003 ◽  
Author(s):  
Junya Yagi

This is a brief review of my work on the correspondence between four-dimensional [Formula: see text] supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.


Sign in / Sign up

Export Citation Format

Share Document