Some open problems in the theory of rational interpolants in the complex plane

Author(s):  
Amiran Ambroladze ◽  
Hans Wallin
2012 ◽  
Vol 62 (4) ◽  
pp. 559-569 ◽  
Author(s):  
Daniel Bessis ◽  
Luca Perotti ◽  
Daniel Vrinceanu
Keyword(s):  

Author(s):  
Leiba Rodman

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.


Author(s):  
Abdul-Rashid Ramazanov ◽  
V.G. Magomedova

For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0<x_1<\dots $ with $x_n\to +\infty$ we construct rational spline-functions such that $R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)\linebreak+R_{i-1}(x, f)B_{i,k}(x)$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots)$ and $k=1,2,\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$ $(j=1,2,\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$. Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$, are found.


2015 ◽  
pp. 21-30
Author(s):  
Abdul-Rashid Ramazanov ◽  
Vazipat Magomedova ◽  
◽  

2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.


2008 ◽  
Vol 4 (3) ◽  
pp. 181-192 ◽  
Author(s):  
Giovanni Sparacino ◽  
Andrea Facchinetti ◽  
Alberto Maran ◽  
Claudio Cobelli

Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 30-32
Author(s):  
Tomoyuki Morimae

In cloud quantum computing, a classical client delegate quantum computing to a remote quantum server. An important property of cloud quantum computing is the verifiability: the client can check the integrity of the server. Whether such a classical verification of quantum computing is possible or not is one of the most important open problems in quantum computing. We tackle this problem from the view point of quantum interactive proof systems. Dr Tomoyuki Morimae is part of the Quantum Information Group at the Yukawa Institute for Theoretical Physics at Kyoto University, Japan. He leads a team which is concerned with two main research subjects: quantum supremacy and the verification of quantum computing.


Sign in / Sign up

Export Citation Format

Share Document