Case study of the temporal and spatial changes in Lake Luoma's water quality using multivariate analysis

Author(s):  
Yufeng Xie
2014 ◽  
Vol 513-517 ◽  
pp. 3228-3232 ◽  
Author(s):  
Xiao Li Tao ◽  
Yong Ping Bai

Wetlands play a number of roles in the environment, which are also considered the most biologically diverse of all ecosystems. Utilizing RS and the GIS software, remote datum were matched and classified. By these transactions, the temporal and spatial changes of wetland landscape are explored in Wuhu, combining qualitative analysis and quantitative methods. This paper analyzed the time-spatial revolution process which indicated that, firstly the area of wetland reduced rapidly from remote sensing image in 1988, 2001 and 2005, secondly the exterior of urban changed acutely and the interior were protected well in view of spatial pattern. Moreover, driving force factors were pointed out. Human activities, especially urbanization were the main causes of wetlands degradation. Simultaneity, the development of farming, the construction of infrastructure and nature were important factors. Owing to rapid economic development and urban sprawling, wetlands are encountering threaten to be converting to other land uses. Thus, the paper provides policy advices for wetland conservation and urban planning toward sustainable development.


1997 ◽  
Vol 21 (5) ◽  
pp. 725-732 ◽  
Author(s):  
Bahram Momen ◽  
Larry W. Eichler ◽  
Charles W. Boylen ◽  
Jonathan P. Zehr

2013 ◽  
Vol 10 (12) ◽  
pp. 15409-15432 ◽  
Author(s):  
T. Zhang ◽  
W. H. Zeng ◽  
S. R. Wang ◽  
Z. K. Ni

Abstract. Temporal and spatial changes to the water quality of Dianchi Lake in Southwest China were investigated using monthly monitoring data from 2005 to 2012. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19–1.46, 6.11–16.79, 0.06–0.14 mg L−1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13–0.20, 1.82–3.01, 0.04–0.09 mg L−1, respectively. Cluster Analysis (CA) classified the 10 monitoring sites into two groups (group A and group B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005–2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted.


Sign in / Sign up

Export Citation Format

Share Document