Postbuckling Behavior of Shear Deformable Laminated Cylindrical Panels

2019 ◽  
Vol 86 (7) ◽  
Author(s):  
B. S. Cox ◽  
R. M. J. Groh ◽  
A. Pirrera

Curved shell structures are known for their excellent load-carrying capability and are commonly used in thin-walled constructions. Although theoretically able to withstand greater buckling loads than flat structures, shell structures are notoriously sensitive to imperfections owing to their postbuckling behavior often being governed by subcritical bifurcations. Thus, shell structures often buckle at significantly lower loads than those predicted numerically and the ensuing dynamic snap to another equilibrium can lead to permanent damage. Furthermore, the strong sensitivity to initial imperfections, as well as their stochastic nature, limits the predictive capability of current stability analyses. Our objective here is to convert the subcritical nature of the buckling event to a supercritical one, thereby improving the reliability of numerical predictions and mitigating the possibility of catastrophic failure. We explore the elastically nonlinear postbuckling response of axially compressed cylindrical panels using numerical continuation techniques. These analyses show that axially compressed panels exhibit a highly nonlinear and complex postbuckling behavior with many entangled postbuckled equilibrium curves. We unveil isolated regions of stable equilibria in otherwise unstable postbuckled regimes, which often possess greater load-carrying capacity. By modifying the initial geometry of the panel in a targeted—rather than stochastic—and imperceptible manner, the postbuckling behavior of these shells can be tailored without a significant increase in mass. These findings provide new insight into the buckling and postbuckling behavior of shell structures and opportunities for modifying and controlling their postbuckling response for enhanced efficiency and functionality.


2010 ◽  
Vol 10 (04) ◽  
pp. 737-760 ◽  
Author(s):  
N. M. F. SILVA ◽  
D. CAMOTIM ◽  
N. SILVESTRE ◽  
R. DEGENHARDT

This paper presents the numerical implementation and illustrates the application and potential of a nonlinear elastic generalised beam theory (GBT) beam finite formulation to analyze the postbuckling behavior of laminated CFRP composite thin-walled prismatic cylindrical panels. This formulation (i) is based on a novel GBT cross-section analysis approach, (ii) accounts for the presence of initial geometrical imperfections and (iii) adopts an incremental iterative solution procedure employing the Newton–Raphson method and an arclength control strategy. No stiffness degradation or ply failure is taken into consideration and the material is deemed linear elastic and orthotropic. Numerical results concerning the local buckling and postbuckling behavior of stiffened CFRP cylindrical panels are presented and discussed — one of these panels was experimentally tested and numerically investigated in the context of the COCOMAT project. Taking full advantage of the GBT unique modal features, one is able to (i) examine the nature of the panel structural response, which is expressed in terms of deformation mode participations, and (ii) perform analyses involving very few d.o.f. (by preselecting a small set of deformation modes). The panel buckling loads and deformed configurations obtained from the GBT analyses are validated through comparison with either experimental data or values yielded by shell finite element analyses carried out in the code ABAQUS. In order to assess how the curvature affects the panel buckling and initial postbuckling behavior, a stiffened plate having a width identical to the cylindrical panel is also analyzed and the results obtained are compared with those determined for the corresponding curved panels.


Sign in / Sign up

Export Citation Format

Share Document