Macroscopic systems, dual gravity lensing and other emerging topics in quantum-gravity phenomenology

Author(s):  
Giovanni Amelino-Camelia
2002 ◽  
Vol 17 (15n17) ◽  
pp. 899-922 ◽  
Author(s):  
GIOVANNI AMELINO-CAMELIA

Over the last few years part of the quantum-gravity community has modified its attitude toward the possibility of finding experimental contexts that provide insight on non-classical properties of spacetime. I review those quantum-gravity phenomenology proposals which were instrumental in bringing about this change of attitude, and I discuss the prospects for the short-term future of quantum-gravity phenomenology.


2002 ◽  
Vol 17 (15n17) ◽  
pp. 1135-1145 ◽  
Author(s):  
D. V. AHLUWALIA

The talk centers around the question: Can general-relativistic description of physical reality be considered complete? On the way I argue how – unknown to many a physicists, even today – the "forty orders of magnitude argument" against quantum gravity phenomenology was defeated more than a quarter of a century ago, and how we now stand at the possible verge of detecting a signal for the spacetime foam, and studying the gravitationally-modified wave particle duality using superconducting quantum interference devices.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Ana Alonso-Serrano ◽  
Marek Liška

This work is based on the formalism developed in the study of the thermodynamics of spacetime used to derive Einstein equations from the proportionality of entropy within an area. When low-energy quantum gravity effects are considered, an extra logarithmic term in the area is added to the entropy expression. Here, we present the derivation of the quantum modified gravitational dynamics from this modified entropy expression and discuss its main features. Furthermore, we outline the application of the modified dynamics to cosmology, suggesting the replacement of the Big Bang singularity with a regular bounce.


2005 ◽  
Vol 14 (12) ◽  
pp. 2069-2094 ◽  
Author(s):  
DANIEL SUDARSKY

The idea that quantum gravity manifestations are associated with a violation of Lorentz invariance is very strongly bounded and faces serious theoretical challenges. Other related ideas seem to be drowning in interpretational quagmires. This leads us to consider alternative lines of thought for such a phenomenological search. We discuss the underlying viewpoints and briefly mention their possible connections with other current theoretical ideas.


2004 ◽  
Vol 19 (24) ◽  
pp. 1829-1840 ◽  
Author(s):  
FAY DOWKER ◽  
JOE HENSON ◽  
RAFAEL D. SORKIN

Contrary to what is often stated, a fundamental spacetime discreteness need not contradict Lorentz invariance. A causal set's discreteness is in fact locally Lorentz invariant, and we recall the reasons why. For illustration, we introduce a phenomenological model of massive particles propagating in a Minkowski spacetime which arises from an underlying causal set. The particles undergo a Lorentz invariant diffusion in phase space, and we speculate on whether this could have any bearing on the origin of high energy cosmic rays.


Sign in / Sign up

Export Citation Format

Share Document