BI-DIRECTIONAL SCALABLE SOLID-STATE CIRCUIT BREAKERS FOR HYBRID-ELECTRIC VEHICLES

Author(s):  
D. P. URCIUOLI ◽  
VICTOR VELIADIS
2009 ◽  
Vol 19 (01) ◽  
pp. 183-192 ◽  
Author(s):  
D. P. URCIUOLI ◽  
VICTOR VELIADIS

Power electronics in hybrid-electric military ground vehicles require fast fault isolation, and benefit additionally from bi-directional fault isolation. To prevent system damage or failure, maximum fault current interrupt speeds in tens to hundreds of microseconds are necessary. While inherently providing bi-directional fault isolation, mechanical contactors and circuit breakers do not provide adequate actuation speeds, and suffer severe degradation during repeated fault isolation. Instead, it is desired to use a scalable array of solid-state devices as a solid-state circuit breaker (SSCB) having a collectively low conduction loss to provide large current handling capability and fast transition speed for current interruption. Although, both silicon-carbide (SiC) JFET and SiC MOSFET devices having high breakdown voltages and low drain-to-source resistances have been developed, neither device structure alone is capable of reverse blocking at full voltage. Limitations exist for using a dual common-source structure for either device type. Small-scale SSCB experiments were conducted using 0.03 cm2 normally-on SiC VJFETs. Based on results of these tests, a normally-on VJFET device modification is made, and a proposed symmetric SiC JFET is considered for this application.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Sign in / Sign up

Export Citation Format

Share Document