Ground state fluctuations of quantum mean field systems

Author(s):  
A.K. Callebaut ◽  
M. Fannes
Author(s):  
Phan Thành Nam ◽  
Marcin Napiórkowski

AbstractWe consider the homogeneous Bose gas on a unit torus in the mean-field regime when the interaction strength is proportional to the inverse of the particle number. In the limit when the number of particles becomes large, we derive a two-term expansion of the one-body density matrix of the ground state. The proof is based on a cubic correction to Bogoliubov’s approximation of the ground state energy and the ground state.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


1997 ◽  
Vol 14 (4) ◽  
pp. 259-262 ◽  
Author(s):  
Ren Zhong-zhou ◽  
Zhu Zhi-yuan ◽  
Cai Yan-huang ◽  
Shen Yao-song ◽  
Zhan Wen-long ◽  
...  

2019 ◽  
Vol 64 (8) ◽  
pp. 3461-3468 ◽  
Author(s):  
Qingyuan Qi ◽  
Huanshui Zhang ◽  
Zhen Wu

Author(s):  
Guido Schneider

We are interested in reflection symmetric (x↦–x) evolution problems on the infinite line. In the systems which we have in mind, a trivial ground state loses stability and bifurcates into a temporally oscillating, spatial periodic pattern. A famous example of such a system is the Taylor-Couette problem in the case of strongly counter-rotating cylinders. In this paper, we consider a system of coupled Kuramoto–Shivashinsky equations as a model problem for such a system. We are interested in solutions which are slow modulations in time and in space of the bifurcating pattern. Multiple scaling analysis is used in the existing literature to derive mean-field coupled Ginzburg–Landau equations as approximation equations for the problem. The aim of this paper is to give exact estimates between the solutions of the coupled Kuramoto–Shivashinsky equations and the associated approximations.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Yibing Shen ◽  
Phillip Isaac ◽  
Jon Links

We investigate the ground-state energy of a Richardson-Gaudin integrable BCS model, generalizing the closed and open p+ip models. The Hamiltonian supports a family of mutually commuting conserved operators satisfying quadratic relations. From the eigenvalues of the conserved operators we derive, in the continuum limit, an integral equation for which a solution corresponding to the ground state is established. The energy expression from this solution agrees with the BCS mean-field result.


2020 ◽  
Vol 35 (26) ◽  
pp. 2050227 ◽  
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich ◽  
Marco Merkli ◽  
Vladimir V. Tereshchuk

We consider a two-component dark matter halo (DMH) of a galaxy containing ultra-light axions (ULA) of different mass. The DMH is described as a Bose–Einstein condensate (BEC) in its ground state. In the mean-field (MF) limit, we have derived the integro-differential equations for the spherically symmetrical wave functions of the two DMH components. We studied, numerically, the radial distribution of the mass density of ULA and constructed the parameters which could be used to distinguish between the two- and one-component DMH. We also discuss an interesting connection between the BEC ground state of a one-component DMH and Black Hole temperature and entropy, and Unruh temperature.


2000 ◽  
Vol 09 (06) ◽  
pp. 507-520
Author(s):  
S. V. S. SASTRY ◽  
ARUN K. JAIN ◽  
Y. K. GAMBHIR

In the relativistic mean field (RMF) calculations usually the basis expansion method is employed. For this one uses single harmonic oscillator (HO) basis functions. A proper description of the ground state nuclear properties of spherical nuclei requires a large (around 20) number of major oscillator shells in the expansion. In halo nuclei where the nucleons have extended spatial distributions, the use of single HO basis for the expansion is inadequate for the correct description of the nuclear properties, especially that of the surface region. In order to rectify these inadequacies, in the present work an orthonormal basis composed of two HO basis functions having different sizes is proposed. It has been shown that for a typical case of (A=11) the ground state constructed using two-HO wave functions extends much beyond the second state or even third excited state of the single HO wave function. To demonstrate its usefulness explicit numerical RMF calculations have been carried out using this procedure for a set of representative spherical nuclei ranging from 16 O to 208 Pb . The binding energies, charge radii and density distributions have been correctly reproduced in the present scheme using a much smaller number of major shells (around 10) in the expansion.


Sign in / Sign up

Export Citation Format

Share Document