THE MORPHOLOGIES OF MOLECULAR CYANINE DYE AGGREGATES AS REVEALED BY CRYOGENIC TRANSMISSION ELECTRON MICROSCOPY

J-Aggregates ◽  
2012 ◽  
pp. 119-153 ◽  
Author(s):  
Hans v. Berlepsch ◽  
Christoph Böttcher
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing Han ◽  
Yucheng Zou ◽  
Zhen Zhang ◽  
Xuming Yang ◽  
Xiaobo Shi ◽  
...  

AbstractCryogenic transmission electron microscopy (cryo-TEM) is a valuable tool recently proposed to investigate battery electrodes. Despite being employed for Li-based battery materials, cryo-TEM measurements for Na-based electrochemical energy storage systems are not commonly reported. In particular, elucidating the chemical and morphological behavior of the Na-metal electrode in contact with a non-aqueous liquid electrolyte solution could provide useful insights that may lead to a better understanding of metal cells during operation. Here, using cryo-TEM, we investigate the effect of fluoroethylene carbonate (FEC) additive on the solid electrolyte interphase (SEI) structure of a Na-metal electrode. Without FEC, the NaPF6-containing carbonate-based electrolyte reacts with the metal electrode to produce an unstable SEI, rich in Na2CO3 and Na3PO4, which constantly consumes the sodium reservoir of the cell during cycling. When FEC is used, the Na-metal electrode forms a multilayer SEI structure comprising an outer NaF-rich amorphous phase and an inner Na3PO4 phase. This layered structure stabilizes the SEI and prevents further reactions between the electrolyte and the Na metal.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


2013 ◽  
Vol 19 (6) ◽  
pp. 1542-1553 ◽  
Author(s):  
Nathan D. Burrows ◽  
R. Lee Penn

AbstractDirect imaging of nanoscale objects suspended in liquid media can be accomplished using cryogenic transmission electron microscopy (cryo-TEM). Cryo-TEM has been used with particular success in microbiology and other biological fields. Samples are prepared by plunging a thin film of sample into an appropriate cryogen, which essentially produces a snapshot of the suspended objects in their liquid medium. With successful sample preparation, cryo-TEM images can facilitate elucidation of aggregation and self-assembly, as well as provide detailed information about cells and viruses. This work provides an explanation of sample preparation, detailed examples of the many artifacts found in cryo-TEM of aqueous samples, and other key considerations for successful cryo-TEM imaging.


Sign in / Sign up

Export Citation Format

Share Document