INTRODUCTION TO SURFACE CODE QUANTUM COMPUTATION

Author(s):  
YIDUN WAN
2019 ◽  
Vol 100 (1) ◽  
Author(s):  
Katharina Laubscher ◽  
Daniel Loss ◽  
James R. Wootton

Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 62 ◽  
Author(s):  
Daniel Litinski ◽  
Felix von Oppen

We present a planar surface-code-based scheme for fault-tolerant quantum computation which eliminates the time overhead of single-qubit Clifford gates, and implements long-range multi-target CNOT gates with a time overhead that scales only logarithmically with the control-target separation. This is done by replacing hardware operations for single-qubit Clifford gates with a classical tracking protocol. Inter-qubit communication is added via a modified lattice surgery protocol that employs twist defects of the surface code. The long-range multi-target CNOT gates facilitate magic state distillation, which renders our scheme fault-tolerant and universal.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Pablo Bonilla Ataides ◽  
David K. Tuckett ◽  
Stephen D. Bartlett ◽  
Steven T. Flammia ◽  
Benjamin J. Brown

AbstractPerforming large calculations with a quantum computer will likely require a fault-tolerant architecture based on quantum error-correcting codes. The challenge is to design practical quantum error-correcting codes that perform well against realistic noise using modest resources. Here we show that a variant of the surface code—the XZZX code—offers remarkable performance for fault-tolerant quantum computation. The error threshold of this code matches what can be achieved with random codes (hashing) for every single-qubit Pauli noise channel; it is the first explicit code shown to have this universal property. We present numerical evidence that the threshold even exceeds this hashing bound for an experimentally relevant range of noise parameters. Focusing on the common situation where qubit dephasing is the dominant noise, we show that this code has a practical, high-performance decoder and surpasses all previously known thresholds in the realistic setting where syndrome measurements are unreliable. We go on to demonstrate the favourable sub-threshold resource scaling that can be obtained by specialising a code to exploit structure in the noise. We show that it is possible to maintain all of these advantages when we perform fault-tolerant quantum computation.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 74 ◽  
Author(s):  
Craig Gidney

We improve the number of T gates needed to perform an n-bit adder from 8n+O(1) to 4n+O(1). We do so via a "temporary logical-AND" construction which uses four T gates to store the logical-AND of two qubits into an ancilla and zero T gates to later erase the ancilla. This construction is equivalent to one by Jones, except that our framing makes it clear that the technique is far more widely applicable than previously realized. Temporary logical-ANDs can be applied to integer arithmetic, modular arithmetic, rotation synthesis, the quantum Fourier transform, Shor's algorithm, Grover oracles, and many other circuits. Because T gates dominate the cost of quantum computation based on the surface code, and temporary logical-ANDs are widely applicable, this represents a significant reduction in projected costs of quantum computation. In addition to our n-bit adder, we present an n-bit controlled adder circuit with T-count of 8n+O(1), a temporary adder that can be computed for the same cost as the normal adder but whose result can be kept until it is later uncomputed without using T gates, and discuss some other constructions whose T-count is improved by the temporary logical-AND.


2015 ◽  
Vol 15 (1&2) ◽  
pp. 1034-1444
Author(s):  
Austin G. Fowler

The surface code is highly practical, enabling arbitrarily reliable quantum computation given a 2-D nearest-neighbor coupled array of qubits with gate error rates below approximately 1\%. We describe an open source library, Polyestimate, enabling a user with no knowledge of the surface code to specify realistic physical quantum gate error models and obtain logical error rate estimates. Functions allowing the user to specify simple depolarizing error rates for each gate have also been included. Every effort has been made to make this library user-friendly. Polyestimate provides data essentially instantaneously that previously required hundreds to thousands of hours of simulation, statements which we discuss and make precise. This advance has been made possible through careful analysis of the error structure of the surface code and extensive pre-simulation.


2010 ◽  
Vol 10 (9&10) ◽  
pp. 780-802
Author(s):  
David S. Wang ◽  
Austin G. Fowler ◽  
Charles D. Hill ◽  
Lloyd C.L. Hollenberg

Recent work on fault-tolerant quantum computation making use of topological error correction shows great potential, with the 2d surface code possessing a threshold error rate approaching 1\%. However, the 2d surface code requires the use of a complex state distillation procedure to achieve universal quantum computation. The color code of is a related scheme partially solving the problem, providing a means to perform all Clifford group gates transversally. We review the color code and its error correcting methodology, discussing one approximate technique based on graph matching. We derive an analytic lower bound to the threshold error rate of 6.25\% under error-free syndrome extraction, while numerical simulations indicate it may be as high as 13.3\%. Inclusion of faulty syndrome extraction circuits drops the threshold to approximately 0.10 \pm 0.01\%.


2009 ◽  
Vol 80 (5) ◽  
Author(s):  
Austin G. Fowler ◽  
Ashley M. Stephens ◽  
Peter Groszkowski

Sign in / Sign up

Export Citation Format

Share Document