The Future of the Arctic and the Asian Countries: Concluding Remarks

Author(s):  
Iselin Stensdal
Author(s):  
E E Krasnozhenova ◽  
S V Kulik ◽  
T Chistalyova ◽  
K Yu Eidemiller ◽  
P L Karabushenko

2021 ◽  
Author(s):  
Ulas Im ◽  
Kostas Tsigaridis ◽  
Gregory S. Faluvegi ◽  
Peter L. Langen ◽  
Joshua P. French ◽  
...  

<p>In order to study the future aerosol burdens and their radiative and climate impacts over the Arctic (>60 °N), future (2015-2050) simulations have been carried out using the GISS-E2.1 Earth system model. Different future anthrpogenic emission projections have been used from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases. Results showed that Arctic BC, OC and SO<sub>4</sub><sup>2-</sup> burdens decrease significantly in all simulations following the emission projections, with the CMIP6 ensemble showing larger reductions in Arctic aerosol burdens compared to the Eclipse ensemble. For the 2030-2050 period, both the Eclipse Current Legislation (CLE) and the Maximum Feasible Reduction (MFR) ensembles simulated an aerosol top of the atmosphere (TOA) forcing of -0.39±0.01 W m<sup>-2</sup>, of which -0.24±0.01 W m<sup>-2</sup> were attributed to the anthropogenic aerosols. The CMIP6 SSP3-7.0 scenario simulated a TOA aerosol forcing of -0.35 W m<sup>-2</sup> for the same period, while SSP1-2.6 and SSP2-4.5 scenarios simulated a slightly more negative TOA forcing (-0.40 W m<sup>-2</sup>), of which the anthropogenic aerosols accounted for -0.26 W m<sup>-2</sup>. The 2030-2050 mean surface air temperatures are projected to increase by 2.1 °C and 2.4 °C compared to the 1990-2010 mean temperature according to the Eclipse CLE and MFR ensembles, respectively, while the CMIP6 simulation calculated an increase of 1.9 °C (SSP1-2.6) to 2.2 °C (SSP3-7.0). Overall, results show that even the scenarios with largest emission reductions lead to similar impact on the future Arctic surface air temperatures compared to scenarios with smaller emission reductions, while scenarios with no or little mitigation leads to much larger sea-ice loss, implying that even though the magnitude of aerosol reductions lead to similar responses in surface air temperatures, high mitigation of aerosols are still necessary to limit sea-ice loss. </p>


2015 ◽  
Vol 112 (19) ◽  
pp. 5921-5926 ◽  
Author(s):  
Jong-Yeon Park ◽  
Jong-Seong Kug ◽  
Jürgen Bader ◽  
Rebecca Rolph ◽  
Minho Kwon

Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.


Sign in / Sign up

Export Citation Format

Share Document