scholarly journals ON COMPUTING LONGEST PATHS IN SMALL GRAPH CLASSES

2007 ◽  
Vol 18 (05) ◽  
pp. 911-930 ◽  
Author(s):  
RYUHEI UEHARA ◽  
YUSHI UNO

The longest path problem is the one that finds a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. Among those, for trees, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that the longest path problem can be solved efficiently for some tree-like graph classes by this approach. We next propose two new graph classes that have natural interval representations, and show that the longest path problem can be solved efficiently on these classes.

2012 ◽  
Vol 160 (3) ◽  
pp. 210-217 ◽  
Author(s):  
Fatemeh Keshavarz-Kohjerdi ◽  
Alireza Bagheri ◽  
Asghar Asgharian-Sardroud

2013 ◽  
Vol Vol. 15 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Andrew R. Curtis ◽  
Min Chih Lin ◽  
Ross M. Mcconnell ◽  
Yahav Nussbaum ◽  
Francisco Juan Soulignac ◽  
...  

Discrete Algorithms International audience We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. Our algorithm is similar to the isomorphism algorithm for interval graphs of Lueker and Booth, but works on PC trees, which are unrooted and have a cyclic nature, rather than with PQ trees, which are rooted. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, Γ circular-arc graphs, proper circular-arc graphs and convex-round graphs.


2020 ◽  
Author(s):  
Bruno P. Masquio ◽  
Paulo E. D. Pinto ◽  
Jayme L. Szwarcfiter

Graph matching problems are well known and studied, in which we want to find sets of pairwise non-adjacent edges. Recently, there has been an interest in the study of matchings in which the induced subgraphs by the vertices of matchings are connected or disconnected. Although these problems are related to connectivity, the two problems are probably quite different, regarding their complexity. While the complexity of finding a maximum disconnected mat- ching is still unknown for a general graph, the one for connected matchings can be solved in polynomial time. Our contribution in this paper is a linear time algorithm to find a maximum connected matching of a general connected graph, given a general maximum matching as input.


2002 ◽  
Vol 44 (2) ◽  
pp. 193-204 ◽  
Author(s):  
D. S. Franzblau ◽  
A. Raychaudhuri

A minimum Hamiltonian completion of a graph G is a minimum-size set of edges that, when added to G, guarantee a Hamiltonian path. Finding a Hamiltonian completion has applications to frequency assignment as well as distributed computing. If the new edges are deleted from the Hamiltonian path, one is left with a minimum path cover, a minimum-size set of vertex-disjoint paths that cover the vertices of G. For arbitrary graphs, constructing a minimum Hamiltonian completion or path cover is clearly NP-hard, but there exists a linear-time algorithm for trees. In this paper we first give a description and proof of correctness for this linear-time algorithm that is simpler and more intuitive than those given previously. We show that the algorithm extends also to unicyclic graphs. We then give a new method for finding an optimal path cover or Hamiltonian completion for a tree that uses a reduction to a maximum flow problem. In addition, we show how to extend the reduction to construct, if possible, a covering of the vertices of a bipartite graph with vertex-disjoint cycles, that is, a 2-factor.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


Sign in / Sign up

Export Citation Format

Share Document