COMPLEXITY IN UNION-FREE REGULAR LANGUAGES

2011 ◽  
Vol 22 (07) ◽  
pp. 1639-1653 ◽  
Author(s):  
GALINA JIRÁSKOVÁ ◽  
TOMÁŠ MASOPUST

We continue the investigation of union-free regular languages that are described by regular expressions without the union operation. We also define deterministic union-free languages as languages accepted by one-cycle-free-path deterministic finite automata, and show that they are properly included in the class of union-free languages. We prove that (deterministic) union-freeness of languages does not accelerate regular operations, except for the reversal in the nondeterministic case.

Author(s):  
Benedek Nagy

Union-free expressions are regular expressions without using the union operation. Consequently, (nondeterministic) union-free languages are described by regular expressions using only concatenation and Kleene star. The language class is also characterised by a special class of finite automata: 1CFPAs have exactly one cycle-free accepting path from each of their states. Obviously such an automaton has exactly one accepting state. The deterministic counterpart of such class of automata defines the deterministic union-free (d-union-free, for short) languages. In this paper [Formula: see text]-free nondeterministic variants of 1CFPAs are used to define n-union-free languages. The defined language class is shown to be properly between the classes of (nondeterministic) union-free and d-union-free languages (in case of at least binary alphabet). In case of unary alphabet the class of n-union-free languages coincides with the class of union-free languages. Some properties of the new subregular class of languages are discussed, e.g., closure properties. On the other hand, a regular expression is in union normal form if it is a finite union of union-free expressions. It is well known that every regular expression can be written in union normal form, i.e., all regular languages can be described as finite unions of (nondeterministic) union-free languages. It is also known that the same fact does not hold for deterministic union-free languages, that is, there are regular languages that cannot be written as finite unions of d-union-free languages. As an important result here we show that every regular language can be defined by a finite union of n-union-free languages. This fact also allows to define n-union-complexity of regular languages.


Computability ◽  
2021 ◽  
pp. 1-16
Author(s):  
Merlin Carl

An important theorem in classical complexity theory is that REG = LOGLOGSPACE, i.e., that languages decidable with double-logarithmic space bound are regular. We consider a transfinite analogue of this theorem. To this end, we introduce deterministic ordinal automata (DOAs) and show that they satisfy many of the basic statements of the theory of deterministic finite automata and regular languages. We then consider languages decidable by an ordinal Turing machine (OTM), introduced by P. Koepke in 2005 and show that if the working space of an OTM is of strictly smaller cardinality than the input length for all sufficiently long inputs, the language so decided is also decidable by a DOA, which is a transfinite analogue of LOGLOGSPACE ⊆ REG; the other direction, however, is easily seen to fail.


2009 ◽  
Vol 20 (04) ◽  
pp. 669-684 ◽  
Author(s):  
MARCO ALMEIDA ◽  
NELMA MOREIRA ◽  
ROGÉRIO REIS

Antimirov and Mosses proposed a rewrite system for deciding the equivalence of two (extended) regular expressions. They argued that this method could lead to a better average-case algorithm than those based on the comparison of the equivalent minimal deterministic finite automata. In this paper we present a functional approach to that method, prove its correctness, and give some experimental comparative results. Besides an improved functional version of Antimirov and Mosses's algorithm, we present an alternative one using partial derivatives. Our preliminary results lead to the conclusion that, indeed, these methods are feasible and, most of the time, faster than the classical methods.


2021 ◽  
Vol 27 (4) ◽  
pp. 324-340
Author(s):  
Martin Berglund ◽  
Brink van der Merwe ◽  
Steyn van Litsenborgh

This paper investigates regular expressions which in addition to the standard operators of union, concatenation, and Kleene star, have lookaheads. We show how to translate regular expressions with lookaheads (REwLA) to equivalent Boolean automata having at most 3 states more than the length of the REwLA. We also investigate the state complexity when translating REwLA to equivalent deterministic finite automata (DFA).


Author(s):  
Robert S. R. Myers ◽  
Stefan Milius ◽  
Henning Urbat

AbstractWe introduce a new measure on regular languages: their nondeterministic syntactic complexity. It is the least degree of any extension of the ‘canonical boolean representation’ of the syntactic monoid. Equivalently, it is the least number of states of any subatomic nondeterministic acceptor. It turns out that essentially all previous structural work on nondeterministic state-minimality computes this measure. Our approach rests on an algebraic interpretation of nondeterministic finite automata as deterministic finite automata endowed with semilattice structure. Crucially, the latter form a self-dual category.


2012 ◽  
Vol 23 (06) ◽  
pp. 1207-1225 ◽  
Author(s):  
ANDREAS MALETTI ◽  
DANIEL QUERNHEIM

Hyper-minimization of deterministic finite automata (DFA) is a recently introduced state reduction technique that allows a finite change in the recognized language. A generalization of this lossy compression method to the weighted setting over semifields is presented, which allows the recognized weighted language to differ for finitely many input strings. First, the structure of hyper-minimal deterministic weighted finite automata is characterized in a similar way as in classical weighted minimization and unweighted hyper-minimization. Second, an efficient hyper-minimization algorithm, which runs in time [Formula: see text], is derived from this characterization. Third, the closure properties of canonical regular languages, which are languages recognized by hyper-minimal DFA, are investigated. Finally, some recent results in the area of hyper-minimization are recalled.


2021 ◽  
Vol 58 (4) ◽  
pp. 263-279
Author(s):  
Henning Bordihn ◽  
György Vaszil

AbstractWe study the concept of reversibility in connection with parallel communicating systems of finite automata (PCFA in short). We define the notion of reversibility in the case of PCFA (also covering the non-deterministic case) and discuss the relationship of the reversibility of the systems and the reversibility of its components. We show that a system can be reversible with non-reversible components, and the other way around, the reversibility of the components does not necessarily imply the reversibility of the system as a whole. We also investigate the computational power of deterministic centralized reversible PCFA. We show that these very simple types of PCFA (returning or non-returning) can recognize regular languages which cannot be accepted by reversible (deterministic) finite automata, and that they can even accept languages that are not context-free. We also separate the deterministic and non-deterministic variants in the case of systems with non-returning communication. We show that there are languages accepted by non-deterministic centralized PCFA, which cannot be recognized by any deterministic variant of the same type.


Sign in / Sign up

Export Citation Format

Share Document