ON THE LEFTMOST DERVIATION IN MATRIX GRAMMARS

1999 ◽  
Vol 10 (01) ◽  
pp. 61-79 ◽  
Author(s):  
JÜRGEN DASSOW ◽  
HENNING FERNAU ◽  
GHEORGHE PĂUN

Matrix grammars are one of the classical topics of formal languages, more specifically, regulated rewriting. Although this type of control on the work of context-free grammars is one of the earliest, matrix grammars still raise interesting questions (not to speak about old open problems in this area). One such class of problems concerns the leftmost derivation (in grammars without appearance checking). The main point of this paper is the systematic study of all possibilities of defining leftmost derivation in matrix grammars. Twelve types of such a restriction are defined, only four of which being discussed in literature. For seven of them, we find a proof of a characterization of recursively enumerable languages (by matrix grammars with arbitrary context-free rules but without appearance checking). Other three cases characterize the recursively enumerable languages modulo a morphism and an intersection with a regular language. In this way, we solve nearly all problems listed as open on page 67 of the monograph [7], which can be seen as the main contribution of this paper. Moreover, we find a characterization of the recursively enumerable languages for matrix grammars with the leftmost restriction defined on classes of a given partition of the nonterminal alphabet.

2015 ◽  
Vol 26 (06) ◽  
pp. 709-731 ◽  
Author(s):  
Zbyněk Křivka ◽  
Alexander Meduna

This paper introduces and studies jumping grammars, which represent a grammatical counterpart to the recently introduced jumping automata. These grammars are conceptualized just like classical grammars except that during the applications of their productions, they can jump over symbols in either direction within the rewritten strings. More precisely, a jumping grammar rewrites a string z according to a rule x → y in such a way that it selects an occurrence of x in z, erases it, and inserts y anywhere in the rewritten string, so this insertion may occur at a different position than the erasure of x. The paper concentrates its attention on investigating the generative power of jumping grammars. More specifically, it compares this power with that of jumping automata and that of classical grammars. A special attention is paid to various context-free versions of jumping grammars, such as regular, right-linear, linear, and context-free grammars of finite index. In addition, we study the semilinearity of context-free, context-sensitive, and monotonous jumping grammars. We also demonstrate that the general versions of jumping grammars characterize the family of recursively enumerable languages. In its conclusion, the paper formulates several open problems and suggests future investigation areas.


Triangle ◽  
2018 ◽  
pp. 101
Author(s):  
Benedek Nagy

In this paper we discuss parallel derivations for context-free, contextsensitive and phrase-structure grammars. For regular and linear grammars only sequential derivation can be applied, but a kind of parallelism is present in linear grammars. We show that nite languages can be generated by a recursion-free rule-set. It is well-known that in context-free grammars the derivation can be in maximal (independent) parallel way. We show that in cases of context-sensitive and recursively enumerable languages the parallel branches of the derivation have some synchronization points. In the case of context-sensitive grammars this synchronization can only be local, but in a derivation of an arbitrary grammar we cannot make this restriction. We present a framework to show how the concept of parallelism can be t to the derivations in formal language theory using tokens.


2011 ◽  
Vol 22 (01) ◽  
pp. 203-212 ◽  
Author(s):  
ERZSÉBET CSUHAJ-VARJÚ ◽  
MARION OSWALD ◽  
GYÖRGY VASZIL

We introduce PC grammar systems where the components form clusters and the query symbols refer to clusters not individual grammars, i.e., the addressee of the query is not precisely identified. We prove that if the same component replies to all queries issued to a cluster in a rewriting step, then non-returning PC grammar systems with 3 clusters and 7 context-free components are able to generate any recursively enumerable language. We also provide open problems and directions for future research.


2008 ◽  
Vol 19 (03) ◽  
pp. 597-615 ◽  
Author(s):  
ARTUR JEŻ

Conjunctive grammars, introduced by Okhotin, extend context-free grammars by an additional operation of intersection in the body of any production of the grammar. Several theorems and algorithms for context-free grammars generalize to the conjunctive case. Okhotin posed nine open problems concerning those grammars. One of them was a question, whether a conjunctive grammars over a unary alphabet generate only regular languages. We give a negative answer, contrary to the conjectured positive one, by constructing a conjunctive grammar for the language {a4n : n ∈ ℕ}. We also generalize this result: for every set of natural numbers L we show that {an : n ∈ L} is a conjunctive unary language, whenever the set of representations in base-k system of elements of L is regular, for arbitrary k.


2000 ◽  
Vol 11 (01) ◽  
pp. 167-181 ◽  
Author(s):  
GHEORGHE PĂUN

Membrane Computing is a recently introduced area of Molecular Computing, where a computation takes place in a membrane structure where multisets of objects evolve according to given rules (they can also pass through membranes). The obtained computing models were called P systems. In basic variants of P systems, the use of objects evolution rules is regulated by a given priority relation; moreover, each membrane has a label and one can send objects to precise membranes, identified by their labels. We propose here a variant where we get rid of both there rather artificial (non-biochemical) features. Instead, we add to membranes and to objects an "electrical charge" and the objects are passed through membranes according to their charge. We prove that such systems are able to characterize the one-letter recursively enumerable languages (equivalently, the recursively enumerable sets of natural numbers), providing that an extra feature is considered: the membranes can be made thicker or thinner (also dissolved) and the communication through a membrane is possible only when its thickness is equal to 1. Several open problems are formulated.


1985 ◽  
Vol 35 ◽  
pp. 261-269 ◽  
Author(s):  
Sadaki Hirose ◽  
Satoshi Okawa ◽  
Masaaki Yoneda

2008 ◽  
Vol 19 (04) ◽  
pp. 859-871 ◽  
Author(s):  
GHEORGHE PĂUN ◽  
MARIO J. PÉREZ-JIMÉNEZ ◽  
TAKASHI YOKOMORI

Insertion-deletion operations are much investigated in linguistics and in DNA computing and several characterizations of Turing computability and characterizations or representations of languages in Chomsky hierarchy were obtained in this framework. In this note we contribute to this research direction with a new characterization of this type, as well as with representations of regular and context-free languages, mainly starting from context-free insertion systems of as small as possible complexity. For instance, each recursively enumerable language L can be represented in a way similar to the celebrated Chomsky-Schützenberger representation of context-free languages, i.e., in the form L = h(L(γ) ∩ D), where γ is an insertion system of weight (3, 0) (at most three symbols are inserted in a context of length zero), h is a projection, and D is a Dyck language. A similar representation can be obtained for regular languages, involving insertion systems of weight (2,0) and star languages, as well as for context-free languages – this time using insertion systems of weight (3, 0) and star languages.


2010 ◽  
Vol 21 (01) ◽  
pp. 1-25
Author(s):  
ETSURO MORIYA ◽  
FRIEDRICH OTTO

The concepts of alternation and of state alternation are extended from context-free grammars to context-sensitive and arbitrary phrase-structure grammars. For the resulting classes of alternating grammars the expressive power is investigated with respect to the leftmost derivation mode and with respect to the unrestricted derivation mode. In particular new grammatical characterizations for the class of languages that are accepted by alternating pushdown automata are obtained in this way.


Author(s):  
Xingyi Zhang ◽  
Jun Wang ◽  
Linqiang Pan

Axon P systems are a class of spiking neural P systems. In this paper, the axon P systems are used as number generators and language generators. As a language generator, the relationships of the families of languages generated by axon P systems with finite and context-free languages are considered. As a number generator, a characterization of the family of finite sets can be obtained by axon P systems with only one node. The relationships of sets of numbers generated by axon P systems with semilinear sets of numbers are also investigated. This paper partially answers some open problems formulated by H. Chen, T.-O. Ishdorj and Gh. Păun.


Sign in / Sign up

Export Citation Format

Share Document