SOLITARY WAVES OF THE NONLINEAR KLEIN-GORDON EQUATION COUPLED WITH THE MAXWELL EQUATIONS

2002 ◽  
Vol 14 (04) ◽  
pp. 409-420 ◽  
Author(s):  
VIERI BENCI ◽  
DONATO FORTUNATO FORTUNATO

This paper is divided in two parts. In the first part we construct a model which describes solitary waves of the nonlinear Klein-Gordon equation interacting with the electromagnetic field. In the second part we study the electrostatic case. We prove the existence of infinitely many pairs (ψ, E), where ψ is a solitary wave for the nonlinear Klein-Gordon equation and E is the electric field related to ψ.

2014 ◽  
Vol 39 (8) ◽  
pp. 1479-1522 ◽  
Author(s):  
Jacopo Bellazzini ◽  
Marco Ghimenti ◽  
Stefan Le Coz

1995 ◽  
Vol 73 (9-10) ◽  
pp. 602-607 ◽  
Author(s):  
S. R. Vatsya

The path-integral method is used to derive a generalized Schrödinger-type equation from the Kaluza–Klein Lagrangian for a charged particle in an electromagnetic field. The compactness of the fifth dimension and the properties of the physical paths are used to decompose this equation into its infinite components, one of them being similar to the Klein–Gordon equation.


Author(s):  
B. Khosropour

In this work, according to the generalized uncertainty principle, we study the Klein–Gordon equation interacting with the electromagnetic field. The generalized Klein–Gordon equation is obtained in the presence of a scalar electric potential and a uniform magnetic field. Furthermore, we find the relation of the generalized energy–momentum in the presence of a scalar electric potential and a uniform magnetic field separately.


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Teresa D’Aprile ◽  
Dimitri Mugnai

AbstractIn this paper we obtain some non-existence results for the Klein-Gordon equation coupled with the electrostatic field. The method relies on the deduction of some suitable Pohožaev identity which provides necessary conditions to get existence of nontrivial solutions. The case of Maxwell-Schrödinger type coupled equations is also considered.


2010 ◽  
Vol 10 (2) ◽  
Author(s):  
J. Bellazzini ◽  
V. Benci ◽  
C. Bonanno ◽  
A.M. Micheletti

AbstractIn this paper we study existence and orbital stability for solitary waves of the nonlinear Klein-Gordon equation. The energy of these solutions travels as a localized packet, hence they are a particular type of solitons. In particular we are interested in sufficient conditions on the potential for the existence of solitons. Our proof is based on the study of the ratio energy/charge of a function, which turns out to be a useful approach for many field equations.


Sign in / Sign up

Export Citation Format

Share Document