Mechanics of a charged particle on the Kaluza–Klein background

1995 ◽  
Vol 73 (9-10) ◽  
pp. 602-607 ◽  
Author(s):  
S. R. Vatsya

The path-integral method is used to derive a generalized Schrödinger-type equation from the Kaluza–Klein Lagrangian for a charged particle in an electromagnetic field. The compactness of the fifth dimension and the properties of the physical paths are used to decompose this equation into its infinite components, one of them being similar to the Klein–Gordon equation.

2002 ◽  
Vol 14 (04) ◽  
pp. 409-420 ◽  
Author(s):  
VIERI BENCI ◽  
DONATO FORTUNATO FORTUNATO

This paper is divided in two parts. In the first part we construct a model which describes solitary waves of the nonlinear Klein-Gordon equation interacting with the electromagnetic field. In the second part we study the electrostatic case. We prove the existence of infinitely many pairs (ψ, E), where ψ is a solitary wave for the nonlinear Klein-Gordon equation and E is the electric field related to ψ.


Author(s):  
B. Khosropour

In this work, according to the generalized uncertainty principle, we study the Klein–Gordon equation interacting with the electromagnetic field. The generalized Klein–Gordon equation is obtained in the presence of a scalar electric potential and a uniform magnetic field. Furthermore, we find the relation of the generalized energy–momentum in the presence of a scalar electric potential and a uniform magnetic field separately.


Author(s):  
Hossein Jafari

In this paper, we apply two decomposition methods, the Adomian decomposition method (ADM) and a well-established iterative method, to solve time-fractional Klein–Gordon type equation. We compare these methods and discuss the convergence of them. The obtained results reveal that these methods are very accurate and effective.


1992 ◽  
Vol 70 (6) ◽  
pp. 467-469 ◽  
Author(s):  
A. Grigorov ◽  
N. Martinov ◽  
D. Ouroushev ◽  
Vl. Georgiev

A simple method for generating the exact solutions of the nonlinear Klein–Gordon equation is proposed. The solutions obtained depend on two arbitrary functions and are in the form of running waves. An application of one of the solutions for the (2 + 1) – dimensional sine-Gordon equation is proposed. It concerns the selective properties of a two-dimensional semi-infinite Josephson junction with regard to an external electromagnetic field in the form of running waves with a phase velocity equal to the Swihart velocity. A method for measuring the Swihart velocity is presented.


2007 ◽  
Vol 22 (22) ◽  
pp. 1621-1634 ◽  
Author(s):  
EUGEN RADU ◽  
MIHAI VISINESCU

We investigate solutions to the Klein–Gordon equation in a class of five-dimensional geometries presenting the same symmetries and asymptotic structure as the Gross–Perry–Sorkin monopole solution. Apart from globally regular metrics, we consider also squashed Kaluza–Klein black holes backgrounds.


1992 ◽  
Vol 07 (13) ◽  
pp. 3035-3042 ◽  
Author(s):  
R. RAMANATHAN

The Klein–Gordon equation is derived from a generalized Markov principle in a five-dimensional space in which the Minkowski space is embedded as a subspace. Compactification of the parametric fifth dimension results in a nonlinear equation whose linearized version is the Klein–Gordon equation.


Sign in / Sign up

Export Citation Format

Share Document