Electromagnetic interaction with the Klein–Gordon equation in the framework of GUP

Author(s):  
B. Khosropour

In this work, according to the generalized uncertainty principle, we study the Klein–Gordon equation interacting with the electromagnetic field. The generalized Klein–Gordon equation is obtained in the presence of a scalar electric potential and a uniform magnetic field. Furthermore, we find the relation of the generalized energy–momentum in the presence of a scalar electric potential and a uniform magnetic field separately.

2017 ◽  
Vol 13 (2) ◽  
pp. 4689-4691
Author(s):  
Jim Goodman

Considering two balls of Z protons each near each other the residual electric potential V is calculated. Also the gravitational potential is calculated. The Gravitational constant is the same for both. Thus the electric field creates gravity. This calculation is possible because the multibody energy states are known exactly. The relativistic correction of 2 has been found from the Klein-Gordon Equation solution. This finding is an important step in reducing known forces to one field. Recall the electric field is generated by motion in the magnetic field of atoms of a magnetic dipole.  The mass is a function of the length of the magnetic dipole.


2016 ◽  
Vol 71 (6) ◽  
pp. 481-485 ◽  
Author(s):  
S.M. Amirfakhrian

AbstractIn this article, we studied the Klein–Gordon equation in a generalised uncertainty principle (GUP) framework which predicts a minimal uncertainty in position. We considered a spinless particle in this framework in the presence of a magnetic field, applied in the z-direction, which varies as ${1 \over {{x^2}}}.$ We found the energy eigenvalues of this system and also obtained the correspounding eigenfunctions, using the numerical method. When GUP parameter tends to zero, our solutions were in agreement with those obtained in the absence of GUP.


2016 ◽  
Vol 26 (07) ◽  
pp. 1750062 ◽  
Author(s):  
Shiwei Zhou ◽  
Ge-Rui Chen

Recently, some approaches to quantum gravity indicate that a minimal measurable length [Formula: see text] should be considered, a direct implication of the minimal measurable length is the generalized uncertainty principle (GUP). Taking the effect of GUP into account, Hawking radiation of massless scalar particles from a Schwarzschild black hole is investigated by the use of Damour–Ruffini’s method. The original Klein–Gordon equation is modified. It is obtained that the corrected Hawking temperature is related to the energy of emitting particles. Some discussions appear in the last section.


1995 ◽  
Vol 73 (9-10) ◽  
pp. 602-607 ◽  
Author(s):  
S. R. Vatsya

The path-integral method is used to derive a generalized Schrödinger-type equation from the Kaluza–Klein Lagrangian for a charged particle in an electromagnetic field. The compactness of the fifth dimension and the properties of the physical paths are used to decompose this equation into its infinite components, one of them being similar to the Klein–Gordon equation.


2002 ◽  
Vol 14 (04) ◽  
pp. 409-420 ◽  
Author(s):  
VIERI BENCI ◽  
DONATO FORTUNATO FORTUNATO

This paper is divided in two parts. In the first part we construct a model which describes solitary waves of the nonlinear Klein-Gordon equation interacting with the electromagnetic field. In the second part we study the electrostatic case. We prove the existence of infinitely many pairs (ψ, E), where ψ is a solitary wave for the nonlinear Klein-Gordon equation and E is the electric field related to ψ.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

We carry out the Hawking temperature of a 2+1-dimensional circularly symmetric traversable wormhole in the framework of the generalized uncertainty principle (GUP). Firstly, we introduce the modified Klein-Gordon equation of the spin-0 particle, the modified Dirac equation of the spin-1/2 particle, and the modified vector boson equation of the spin-1 particle in the wormhole background, respectively. Given these equations under the Hamilton-Jacobi approach, we analyze the GUP effect on the tunneling probability of these particles near the trapping horizon and, subsequently, on the Hawking temperature of the wormhole. Furthermore, we have found that the modified Hawking temperature of the wormhole is determined by both wormhole’s and tunneling particle’s properties and indicated that the wormhole has a positive temperature similar to that of a physical system. This case indicates that the wormhole may be supported by ordinary (nonexotic) matter. In addition, we calculate the Unruh-Verlinde temperature of the wormhole by using Kodama vectors instead of time-like Killing vectors and observe that it equals to the standard Hawking temperature of the wormhole.


2019 ◽  
Vol 2 (1) ◽  
pp. 32-35
Author(s):  
ÖZGÜR MIZRAK ◽  
OKTAY AYDOĞDU ◽  
KENAN SÖĞÜT

Sign in / Sign up

Export Citation Format

Share Document