scholarly journals QUANTUM ENERGY INEQUALITIES IN TWO-DIMENSIONAL CONFORMAL FIELD THEORY

2005 ◽  
Vol 17 (05) ◽  
pp. 577-612 ◽  
Author(s):  
CHRISTOPHER J. FEWSTER ◽  
STEFAN HOLLANDS

Quantum energy inequalities (QEIs) are state-independent lower bounds on weighted averages of the stress-energy tensor, and have been established for several free quantum field models. We present rigorous QEI bounds for a class of interacting quantum fields, namely the unitary, positive energy conformal field theories (with stress-energy tensor) on two-dimensional Minkowski space. The QEI bound depends on the weight used to average the stress-energy tensor and the central charge(s) of the theory, but not on the quantum state. We give bounds for various situations: averaging along timelike, null and spacelike curves, as well as over a space-time volume. In addition, we consider boundary conformal field theories and more general "moving mirror" models. Our results hold for all theories obeying a minimal set of axioms which — as we show — are satisfied by all models built from unitary highest-weight representations of the Virasoro algebra. In particular, this includes all (unitary, positive energy) minimal models and rational conformal field theories. Our discussion of this issue collects together (and, in places, corrects) various results from the literature which do not appear to have been assembled in this form elsewhere.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anshuman Dey ◽  
Mikhail Goykhman ◽  
Michael Smolkin

Abstract We study perturbative renormalization of the composite operators in the $$ T\overline{T} $$ T T ¯ -deformed two-dimensional free field theories. The pattern of renormalization for the stress-energy tensor is different in the massive and massless cases. While in the latter case the canonical stress tensor is not renormalized up to high order in the perturbative expansion, in the massive theory there are induced counterterms at linear order. For a massless theory our results match the general formula derived recently in [1].


2003 ◽  
Vol 18 (25) ◽  
pp. 4771-4788 ◽  
Author(s):  
IAN I. KOGAN ◽  
ALEXANDER NICHOLS

We discuss the partners of the stress energy tensor and their structure in Logarithmic conformal field theories. In particular we draw attention to the fundamental differences between theories with zero and non-zero central charge. However they are both characterised by at least two independent parameters. We show how, by using a generalised Sugawara construction, one can calculate the logarithmic partner of T. We show that such a construction works in the c=-2 theory using the conformal dimension one primary currents which generate a logarithmic extension of the Kac-Moody algebra. This is an expanded version of a talk presented by A. Nichols at the conference on Logarithmic Conformal Field Theory and its Applications in Tehran Iran, 2001.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


2001 ◽  
Vol 16 (12) ◽  
pp. 2165-2173 ◽  
Author(s):  
FARDIN KHEIRANDISH ◽  
MOHAMMAD KHORRAMI

A general two-dimensional fractional supersymmetric conformal field theory is investigated. The structure of the symmetries of the theory is studied. Then, applying the generators of the closed subalgebra generated by (L-1,L0,G-1/3) and [Formula: see text], the two-point functions of the component fields of supermultiplets are calculated.


2000 ◽  
Vol 15 (03) ◽  
pp. 413-428 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We follow Witten's proposal1 in the calculation of conformal anomaly from (d + 1)-dimensional higher derivative gravity via AdS/CFT correspondence. It is assumed that some d-dimensional conformal field theories have a description in terms of above (d + 1)-dimensional higher derivative gravity which includes not only the Einstein term and cosmological constant but also curvature squared terms. The explicit expression for two-dimensional and four-dimensional anomalies is found, it contains higher derivative corrections. In particular, it is shown that not only Einstein gravity but also theory with the Lagrangian L =aR2 + bRμνRμν + Λ (even when a=0 or b=0) is five-dimensional bulk theory for [Formula: see text] super-Yang–Mills theory in AdS/CFT correspondence. Similarly, the d + 1 = 3 theory with (or without) Einstein term may describe d = 2 scalar or spinor CFT's. That gives new versions of bulk side which may be useful in different aspects. As application of our general formalism we find next-to-leading corrections to the conformal anomaly of [Formula: see text] supersymmetric theory from d = 5 AdS higher derivative gravity (low energy string effective action).


Sign in / Sign up

Export Citation Format

Share Document