scholarly journals HOMOTOPY OF POSETS, NET-COHOMOLOGY AND SUPERSELECTION SECTORS IN GLOBALLY HYPERBOLIC SPACE-TIMES

2005 ◽  
Vol 17 (09) ◽  
pp. 1021-1070 ◽  
Author(s):  
GIUSEPPE RUZZI

We study sharply localized sectors, known as sectors of DHR-type, of a net of local observables, in arbitrary globally hyperbolic space-times with dimension ≥ 3. We show that these sectors define, as it happens in Minkowski space, a C*-category in which the charge structure manifests itself by the existence of a tensor product, a permutation symmetry and a conjugation. The mathematical framework is that of the net-cohomology of posets according to J. E. Roberts. The net of local observables is indexed by a poset formed by a basis for the topology of the space-time ordered under inclusion. The category of sectors, is equivalent to the category of 1-cocycles of the poset with values in the net. We succeed in analyzing the structure of this category because we show how topological properties of the space-time are encoded in the poset used as index set: the first homotopy group of a poset is introduced and it is shown that the fundamental group of the poset and one of the underlying space-time are isomorphic; any 1-cocycle defines a unitary representation of these fundamental groups. Another important result is the invariance of the net-cohomology under a suitable change of index set of the net.

2017 ◽  
Vol 79 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Wojciech Cegła ◽  
Bernard Jancewicz ◽  
Jan Florek

2005 ◽  
Vol 14 (12) ◽  
pp. 2227-2231 ◽  
Author(s):  
VERONIKA E. HUBENY ◽  
MUKUND RANGAMANI ◽  
SIMON F. ROSS

We argue that in the context of string theory, the usual restriction to globally hyperbolic space–times should be considerably relaxed. We exhibit an example of a space–time which only satisfies the causal condition, and so is arbitrarily close to admitting closed causal curves, but which has a well-behaved dual description, free of paradoxes.


Author(s):  
R. Adlakha ◽  
M. Moghaddaszadeh ◽  
M. A. Attarzadeh ◽  
A. Aref ◽  
M. Nouh

Abstract Acoustic phased arrays are capable of steering and focusing a beam of sound via selective coordination of the spatial distribution of phase angles between multiple sound emitters. Here, we propose a controllable acoustic phased array with space-time modulation that breaks time-reversal symmetry, and enables phononic transition in both momentum and energy spaces. By leveraging the dynamic phase modulation, the proposed linear phased array is no longer bound by the reciprocity principle, and supports asymmetric transmission and reception patterns that can be tuned independently. Through theoretical and numerical investigations, we develop and verify a mathematical framework to characterize the nonreciprocal phenomena, and analyze the frequency conversion between the wave fields. The space-time acoustic phased array facilitates unprecedented control over sound waves in a variety of applications including underwater telecommunication.


2007 ◽  
Vol 22 (29) ◽  
pp. 5237-5244 ◽  
Author(s):  
H. T. NIEH

Curvature and torsion are the two tensors characterizing a general Riemannian space–time. In Einstein's general theory of gravitation, with torsion postulated to vanish and the affine connection identified to the Christoffel symbol, only the curvature tensor plays the central role. For such a purely metric geometry, two well-known topological invariants, namely the Euler class and the Pontryagin class, are useful in characterizing the topological properties of the space–time. From a gauge theory point of view, and especially in the presence of spin, torsion naturally comes into play, and the underlying space–time is no longer purely metric. We describe a torsional topological invariant, discovered in 1982, that has now found increasing usefulness in recent developments.


2020 ◽  
Vol 35 (10) ◽  
pp. 2050055
Author(s):  
R. Vilela Mendes

Normed division and Clifford algebras have been extensively used in the past as a mathematical framework to accommodate the structures of the Standard Model and grand unified theories. Less discussed has been the question of why such algebraic structures appear in Nature. One possibility could be an intrinsic complex, quaternionic or octonionic nature of the space–time manifold. Then, an obvious question is why space–time appears nevertheless to be simply parametrized by the real numbers. How the real slices of an higher-dimensional space–time manifold might be almost independent from each other is discussed here. This comes about as a result of the different nature of the representations of the real kinematical groups and those of the extended spaces. Some of the internal symmetry transformations might however appear as representations on homogeneous spaces of the extended group transformations that cannot be implemented on the elementary states.


Pramana ◽  
1982 ◽  
Vol 18 (5) ◽  
pp. 385-396 ◽  
Author(s):  
P S Joshi ◽  
J V Narlikar

Sign in / Sign up

Export Citation Format

Share Document