scholarly journals A UNIFIED TREATMENT OF CONVEXITY OF RELATIVE ENTROPY AND RELATED TRACE FUNCTIONS, WITH CONDITIONS FOR EQUALITY

2010 ◽  
Vol 22 (09) ◽  
pp. 1099-1121 ◽  
Author(s):  
ANNA JENČOVÁ ◽  
MARY BETH RUSKAI

We consider a generalization of relative entropy derived from the Wigner–Yanase–Dyson entropy and give a simple, self-contained proof that it is convex. Moreover, special cases yield the joint convexity of relative entropy, and for Tr K* Ap K B1-p Lieb's joint concavity in (A, B) for 0 < p < 1 and Ando's joint convexity for 1 < p ≤ 2. This approach allows us to obtain conditions for equality in these cases, as well as conditions for equality in a number of inequalities which follow from them. These include the monotonicity under partial traces, and some Minkowski type matrix inequalities proved by Carlen and Lieb for [Formula: see text]. In all cases, the equality conditions are independent of p; for extensions to three spaces they are identical to the conditions for equality in the strong subadditivity of relative entropy.

2019 ◽  
Vol 31 (07) ◽  
pp. 1950022
Author(s):  
Anna Vershynina

We consider a quantum quasi-relative entropy [Formula: see text] for an operator [Formula: see text] and an operator convex function [Formula: see text]. We show how to obtain the error bounds for the monotonicity and joint convexity inequalities from the recent results for the [Formula: see text]-divergences (i.e. [Formula: see text]). We also provide an error term for a class of operator inequalities, that generalizes operator strong subadditivity inequality. We apply those results to demonstrate explicit bounds for the logarithmic function, that leads to the quantum relative entropy, and the power function, which gives, in particular, a Wigner–Yanase–Dyson skew information. In particular, we provide the remainder terms for the strong subadditivity inequality, operator strong subadditivity inequality, WYD-type inequalities, and the Cauchy–Schwartz inequality.


2015 ◽  
Vol 15 (15&16) ◽  
pp. 1333-1354 ◽  
Author(s):  
Mario Berta ◽  
Marius Lemm ◽  
Mark M. Wilde

The relative entropy is a principal measure of distinguishability in quantum information theory, with its most important property being that it is non-increasing with respect to noisy quantum operations. Here, we establish a remainder term for this inequality that quantifies how well one can recover from a loss of information by employing a rotated Petz recovery map. The main approach for proving this refinement is to combine the methods of [Fawzi and Renner, 2014] with the notion of a relative typical subspace from [Bjelakovic and Siegmund-Schultze, 2003]. Our paper constitutes partial progress towards a remainder term which features just the Petz recovery map (not a rotated Petz map), a conjecture which would have many consequences in quantum information theory. A well known result states that the monotonicity of relative entropy with respect to quantum operations is equivalent to each of the following inequalities: strong subadditivity of entropy, concavity of conditional entropy, joint convexity of relative entropy, and monotonicity of relative entropy with respect to partial trace. We show that this equivalence holds true for refinements of all these inequalities in terms of the Petz recovery map. So either all of these refinements are true or all are false.


Author(s):  
Ivan Bardet ◽  
Ángela Capel ◽  
Cambyse Rouzé

AbstractIn this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. This generalisation, referred to as approximate tensorization of the relative entropy, consists in a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.


1994 ◽  
Vol 06 (05a) ◽  
pp. 1147-1161 ◽  
Author(s):  
MARY BETH RUSKAI

New bounds are given on the contraction of certain generalized forms of the relative entropy of two positive semi-definite operators under completely positive mappings. In addition, several conjectures are presented, one of which would give a strengthening of strong subadditivity. As an application of these bounds in the classical discrete case, a new proof of 2-point logarithmic Sobolev inequalities is presented in an Appendix.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 763 ◽  
Author(s):  
Ana Costa ◽  
Roope Uola ◽  
Otfried Gühne

The effect of quantum steering describes a possible action at a distance via local measurements. Whereas many attempts on characterizing steerability have been pursued, answering the question as to whether a given state is steerable or not remains a difficult task. Here, we investigate the applicability of a recently proposed method for building steering criteria from generalized entropic uncertainty relations. This method works for any entropy which satisfy the properties of (i) (pseudo-) additivity for independent distributions; (ii) state independent entropic uncertainty relation (EUR); and (iii) joint convexity of a corresponding relative entropy. Our study extends the former analysis to Tsallis and Rényi entropies on bipartite and tripartite systems. As examples, we investigate the steerability of the three-qubit GHZ and W states.


2019 ◽  
Vol 17 (04) ◽  
pp. 1950034
Author(s):  
Weijing Li

A kind of new geometric measure of quantum correlations is formulated. The proposed formulation is in terms of the quantum Tsallis relative entropy and can naturally be viewed as a one-parameter extension quantum discordlike measure that satisfies all requirements of a good measure of quantum correlations. It is of an elegant analytic expression and contains several existing good quantum correlation measures as special cases. The partial coherence measure is also investigated.


2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Haitao Zhang ◽  
Tao Li ◽  
Shumin Fei

This paper makes some great attempts to investigate the global exponential synchronization for arrays of coupled delayed Cohen-Grossberg neural networks with both delayed coupling and one single delayed one. By resorting to free-weighting matrix and Kronecker product techniques, two novel synchronization criteria via linear matrix inequalities (LMIs) are presented based on convex combination, in which these conditions are heavily dependent on the bounds of both the delay and its derivative. Owing to that the addressed system can include some famous neural network models as the special cases, the proposed methods can extend and improve those earlier reported ones. The efficiency and applicability of the presented conditions can be demonstrated by two numerical examples with simulations.


2014 ◽  
Vol 12 (06) ◽  
pp. 1450035 ◽  
Author(s):  
M. Daoud ◽  
R. Ahl Laamara ◽  
H. El Hadfi

The pairwise correlations in a multi-qubit state are quantified through a linear variant of relative entropy. In particular, we derive the explicit expressions of total, quantum and classical bipartite correlations. Two different bi-partioning schemes are considered. We discuss the derivation of closest product, quantum–classical and quantum–classical product states. We also investigate the additivity relation between the various pairwise correlations existing in pure and mixed states. As illustration, some special cases are examined.


2009 ◽  
Vol 19 (02) ◽  
pp. 517-529 ◽  
Author(s):  
QING-LONG HAN ◽  
DRISS MEHDI ◽  
DONGSHENG HAN

This paper deals with master–slave synchronization for Lur'e systems subject to a more general sector condition by using time delay feedback control. A new Lyapunov–Krasovskii functional and a new Lur'e–Postnikov Lyapunov functional are proposed to obtain some new delay-dependent synchronization criteria, which are formulated in the form of linear matrix inequalities (LMIs). These criteria cover some existing results as their special cases. An example shows that the result derived in this paper significantly improves some existing ones.


Sign in / Sign up

Export Citation Format

Share Document