scholarly journals Quantitative estimates on the binding energy for hydrogen in non-relativistic QED, II: The spin case

2014 ◽  
Vol 26 (08) ◽  
pp. 1450016
Author(s):  
Jean-Marie Barbaroux ◽  
Semjon Vugalter

The hydrogen binding energy in the Pauli–Fierz model with the spin Zeeman term is determined up to the order α3, where α denotes the fine-structure constant.

2021 ◽  
Vol 34 (3) ◽  
pp. 322-330
Author(s):  
Borros Arneth

We attempt here to calculate the particle masses for all known elementary particles starting from the Rydberg equation and from the Sommerfeld fine structure constant. Remarkably, this is possible. Next, we try to explain why this is possible and what the meaning of the approach seems to be. Thereby, we find some interesting connections. In addition, we realize that there are two different kinds of mass-charge binding energies in an elementary particle: The internal mass-charge binding energy and the external mass-charge binding energy. These two kinds of mass-charge binding energies can explain the higher masses of the highly charged brother particles in some of the heavier particle triplets (such as the charmed sigma particles).


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2019 ◽  
Vol 218 ◽  
pp. 02012
Author(s):  
Graziano Venanzoni

I will report on the recent measurement of the fine structure constant below 1 GeV with the KLOE detector. It represents the first measurement of the running of α(s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s), which is the strongest direct evidence both in time-and space-like regions achieved in a single measurement. From a fit of the real part of Δα(s) and assuming the lepton universality the branching ratio BR(ω → µ+µ−) = (6.6 ± 1.4stat ± 1.7syst) · 10−5 has been determined


2012 ◽  
Vol 85 (10) ◽  
Author(s):  
Eloisa Menegoni ◽  
Maria Archidiacono ◽  
Erminia Calabrese ◽  
Silvia Galli ◽  
C. J. A. P. Martins ◽  
...  

2014 ◽  
Vol 798 (1) ◽  
pp. 18 ◽  
Author(s):  
Jon O'Bryan ◽  
Joseph Smidt ◽  
Francesco De Bernardis ◽  
Asantha Cooray

1992 ◽  
Vol 07 (30) ◽  
pp. 7629-7646 ◽  
Author(s):  
D. ATKINSON ◽  
H.J. DE GROOT ◽  
P.W. JOHNSON

We analyze coupled Dyson-Schwinger equations for massless fermion and photon propagators in QED4[N], taking proper account of charge renormalization. With one fermion flavor, we find a fixed point at an ultraviolet “fine-structure constant” of 2.10, corresponding to a phase transition (associated with the dynamical breaking of chiral symmetry) of mean-field type.


Sign in / Sign up

Export Citation Format

Share Document