Z-Graded Extensions of Poisson Brackets

1997 ◽  
Vol 09 (01) ◽  
pp. 1-27 ◽  
Author(s):  
Janusz Grabowski

A Z-graded Lie bracket { , }P on the exterior algebra Ω(M) of differential forms, which is an extension of the Poisson bracket of functions on a Poisson manifold (M,P), is found. This bracket is simultaneously graded skew-symmetric and satisfies the graded Jacobi identity. It is a kind of an 'integral' of the Koszul–Schouten bracket [ , ]P of differential forms in the sense that the exterior derivative is a bracket homomorphism: [dμ, dν]P=d{μ, ν}P. A naturally defined generalized Hamiltonian map is proved to be a homomorphism between { , }P and the Frölicher–Nijenhuis bracket of vector valued forms. Also relations of this graded Poisson bracket to the Schouten–Nijenhuis bracket and an extension of { , }P to a graded bracket on certain multivector fields, being an 'integral' of the Schouten–Nijenhuis bracket, are studied. All these constructions are generalized to tensor fields associated with an arbitrary Lie algebroid.

2010 ◽  
Vol 25 (18n19) ◽  
pp. 3765-3796 ◽  
Author(s):  
M. CHAICHIAN ◽  
M. OKSANEN ◽  
A. TUREANU ◽  
G. ZET

A covariant Poisson bracket and an associated covariant star product in the sense of deformation quantization are defined on the algebra of tensor-valued differential forms on a symplectic manifold, as a generalization of similar structures that were recently defined on the algebra of (scalar-valued) differential forms. A covariant star product of arbitrary smooth tensor fields is obtained as a special case. Finally, we study covariant star products on a more general Poisson manifold with a linear connection, first for smooth functions and then for smooth tensor fields of any type. Some observations on possible applications of the covariant star products to gravity and gauge theory are made.


1956 ◽  
Vol 59 ◽  
pp. 351-359 ◽  
Author(s):  
Alfred Frölicher ◽  
Albert Nijenhuis

2018 ◽  
Vol 15 (11) ◽  
pp. 1850190 ◽  
Author(s):  
Viktor Abramov

We propose an extension of [Formula: see text]-ary Nambu–Poisson bracket to superspace [Formula: see text] and construct by means of superdeterminant a family of Nambu–Poisson algebras of even degree functions, where the parameter of this family is an invertible transformation of Grassmann coordinates in superspace [Formula: see text]. We prove in the case of the superspaces [Formula: see text] and [Formula: see text] that our [Formula: see text]-ary bracket, defined with the help of superdeterminant, satisfies the conditions for [Formula: see text]-ary Nambu–Poisson bracket, i.e. it is totally skew-symmetric and it satisfies the Leibniz rule and the Filippov–Jacobi identity (fundamental identity). We study the structure of [Formula: see text]-ary bracket defined with the help of superdeterminant in the case of superspace [Formula: see text] and show that it is the sum of usual [Formula: see text]-ary Nambu–Poisson bracket and a new [Formula: see text]-ary bracket, which we call [Formula: see text]-bracket, where [Formula: see text] is the product of two odd degree smooth functions.


2003 ◽  
Vol 68 (3) ◽  
pp. 923-945 ◽  
Author(s):  
David Pierce

AbstractFields of characteristic zero with several commuting derivations can be treated as fields equipped with a space of derivations that is closed under the Lie bracket. The existentially closed instances of such structures can then be given a coordinate-free characterization in terms of differential forms. The main tool for doing this is a generalization of the Frobenius Theorem of differential geometry.


1958 ◽  
Vol 61 ◽  
pp. 422-429
Author(s):  
Alfred Frölicher ◽  
Albert Nijenhuis

2008 ◽  
Vol 18 (05) ◽  
pp. 739-757 ◽  
Author(s):  
SNORRE H. CHRISTIANSEN

Given a cellular complex, we construct spaces of differential forms which form a complex under the exterior derivative, which is isomorphic to the cochain complex of the cellular complex. The construction applies in particular to subsets of Euclidean space divided into polyhedra, for which it provides, for each k, a space of k-forms with a basis indexed by the set of k-dimensional cells. In the framework of mimetic finite differences, the construction provides a conforming reconstruction operator. The construction requires auxiliary spaces of differential forms on each cell, for which we provide two examples. When the cells are simplexes, the construction can be used to recover the standard mixed finite element spaces also called Whitney forms. We can also recover the dual finite elements previously constructed by A. Buffa and the author on the barycentric refinement of a two-dimensional mesh.


1958 ◽  
Vol 61 ◽  
pp. 414-421 ◽  
Author(s):  
Alfred Frölicher ◽  
Albert Nijenhuis

Sign in / Sign up

Export Citation Format

Share Document