Neurolight: A Deep Learning Neural Interface for Cortical Visual Prostheses

2020 ◽  
Vol 30 (09) ◽  
pp. 2050045 ◽  
Author(s):  
Antonio Lozano ◽  
Juan Sebastián Suárez ◽  
Cristina Soto-Sánchez ◽  
Javier Garrigós ◽  
J. Javier Martínez-Alvarez ◽  
...  

Visual neuroprosthesis, that provide electrical stimulation along several sites of the human visual system, constitute a potential tool for vision restoration for the blind. Scientific and technological progress in the fields of neural engineering and artificial vision comes with new theories and tools that, along with the dawn of modern artificial intelligence, constitute a promising framework for the further development of neurotechnology. In the framework of the development of a Cortical Visual Neuroprosthesis for the blind (CORTIVIS), we are now facing the challenge of developing not only computationally powerful tools and flexible approaches that will allow us to provide some degree of functional vision to individuals who are profoundly blind. In this work, we propose a general neuroprosthesis framework composed of several task-oriented and visual encoding modules. We address the development and implementation of computational models of the firing rates of retinal ganglion cells and design a tool — Neurolight — that allows these models to be interfaced with intracortical microelectrodes in order to create electrical stimulation patterns that can evoke useful perceptions. In addition, the developed framework allows the deployment of a diverse array of state-of-the-art deep-learning techniques for task-oriented and general image pre-processing, such as semantic segmentation and object detection in our system’s pipeline. To the best of our knowledge, this constitutes the first deep-learning-based system designed to directly interface with the visual brain through an intracortical microelectrode array. We implement the complete pipeline, from obtaining a video stream to developing and deploying task-oriented deep-learning models and predictive models of retinal ganglion cells’ encoding of visual inputs under the control of a neurostimulation device able to send electrical train pulses to a microelectrode array implanted at the visual cortex.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246547
Author(s):  
Wanying Li ◽  
Shan Qin ◽  
Yijie Lu ◽  
Hao Wang ◽  
Zhen Xu ◽  
...  

Retinal prostheses can restore the basic visual function of patients with retinal degeneration, which relies on effective electrical stimulation to evoke the physiological activities of retinal ganglion cells (RGCs). Current electrical stimulation strategies have defects such as unstable effects and insufficient stimulation positions, therefore, it is crucial to determine the optimal pulse parameters for precise and safe electrical stimulation. Biphasic voltages (cathode-first) with a pulse width of 25 ms and different amplitudes were used to ex vivo stimulate RGCs of three wild-type (WT) mice using a commercial microelectrode array (MEA) recording system. An algorithm is developed to automatically realize both spike-sorting and electrical response identification for the spike signals recorded. Measured from three WT mouse retinas, the total numbers of RGC units and responsive RGC units were 1193 and 151, respectively. In addition, the optimal pulse amplitude range for electrical stimulation was determined to be 0.43 V-1.3 V. The processing results of the automatic algorithm we proposed shows high consistency with those using traditional manual processing. We anticipate the new algorithm can not only speed up the elaborate electrophysiological data processing, but also optimize pulse parameters for the electrical stimulation strategy of neural prostheses.


2003 ◽  
pp. 156-159
Author(s):  
Tomomitsu Miyoshi ◽  
Takeshi Morimoto ◽  
Toru Yakura ◽  
Yuka Okazaki ◽  
Takuji Kurimoto ◽  
...  

2009 ◽  
Vol 102 (6) ◽  
pp. 3260-3269 ◽  
Author(s):  
Chris Sekirnjak ◽  
Clare Hulse ◽  
Lauren H. Jepson ◽  
Pawel Hottowy ◽  
Alexander Sher ◽  
...  

Retinal implants are intended to help patients with degenerative conditions by electrically stimulating surviving cells to produce artificial vision. However, little is known about how individual retinal ganglion cells respond to direct electrical stimulation in degenerating retina. Here we used a transgenic rat model to characterize ganglion cell responses to light and electrical stimulation during photoreceptor degeneration. Retinas from pigmented P23H-1 rats were compared with wild-type retinas between ages P37 and P752. During degeneration, retinal thickness declined by 50%, largely as a consequence of photoreceptor loss. Spontaneous electrical activity in retinal ganglion cells initially increased two- to threefold, but returned to nearly normal levels around P600. A profound decrease in the number of light-responsive ganglion cells was observed during degeneration, culminating in retinas without detectable light responses by P550. Ganglion cells from transgenic and wild-type animals were targeted for focal electrical stimulation using multielectrode arrays with electrode diameters of ∼10 microns. Ganglion cells were stimulated directly and the success rate of stimulation in both groups was 60–70% at all ages. Surprisingly, thresholds (∼0.05 mC/cm2) and latencies (∼0.25 ms) in P23H rat ganglion cells were comparable to those in wild-type ganglion cells at all ages and showed no change over time. Thus ganglion cells in P23H rats respond normally to direct electrical stimulation despite severe photoreceptor degeneration and complete loss of light responses. These findings suggest that high-resolution epiretinal prosthetic devices may be effective in treating vision loss resulting from photoreceptor degeneration.


Sign in / Sign up

Export Citation Format

Share Document