SEMICONDUCTOR UV SOURCES AND DETECTORS: SOME NON-CONSUMER APPLICATIONS

2002 ◽  
Vol 12 (02) ◽  
pp. 421-428
Author(s):  
ELIAS MUÑOZ

UV emitters and photodetectors based on wide band-gap semiconductors are being investigated and may soon become commercially available. Solid state lighting and information storage are two main applications in the consumer area for these new semiconductor devices. Presently, III-nitrides seem to be the most promising materials for such near UV semiconductor devices. In this work some non-consumer applications are indicated. Biophotonics appears to be a very promising area for such devices.

2014 ◽  
Vol 1 ◽  
Author(s):  
Faiz Rahman

ABSTRACTLight-emitting diodes (LEDs) made from wide band gap semiconductors, such as gallium nitride, are undergoing rapid development. Solid-state lighting with these LEDs is transforming patterns of energy usage and lifestyle throughout the world.With solid-state lighting gradually taking over from incandescent and fluorescent lighting, light-emitting diodes (LEDs) are very much the focus of research nowadays. This compact review takes a look at LEDs for lighting applications made from wide band gap semiconductors. A very brief history of electric lighting is included for completeness, followed by a description of blue-emitting LEDs that serve as pump sources for all ‘white’ LEDs. This is followed by a discussion on techniques to extract more light from the confines of LED chips through surface patterning. The thermal management of LEDs is perhaps the most important consideration in designing and using LED-based luminaires. This topic is discussed with regard to recent studies on LED reliability. The very promising development of gallium nitride-on-silicon LEDs is examined next followed by a discussion on phosphors for color conversion in LEDs. LED lighting has positively influenced both upscale and downscale illumination markets worldwide. Its societal impact is examined, with the review concluding with a look at efforts to produce LEDs from zinc oxide – a material that holds much promise for the future of solid-state lighting.


2009 ◽  
Vol 95 (17) ◽  
pp. 172109 ◽  
Author(s):  
Anderson Janotti ◽  
Eric Snow ◽  
Chris G. Van de Walle

2014 ◽  
Vol 43 (25) ◽  
pp. 9620-9632 ◽  
Author(s):  
T. O. L. Sunde ◽  
M. Lindgren ◽  
T. O. Mason ◽  
M.-A. Einarsrud ◽  
T. Grande

Wide band-gap semiconductors doped with luminescent rare earth elements (REEs) have attracted recent interest due to their unique optical properties.


Sign in / Sign up

Export Citation Format

Share Document