CARRIER CAPTURE IN SEMICONDUCTOR QUANTUM WELL LASERS: A QUANTUM TRANSPORT ANALYSIS

1998 ◽  
Vol 09 (04) ◽  
pp. 1211-1233 ◽  
Author(s):  
LEONARD F. REGISTER

A quantum transport-based analysis of the essential physics of carrier capture in semiconductor quantum wells is presented. First, the past progression of models of carrier capture by quantum wells is briefly reviewed. Then carrier capture is modeled using the Schrödinger Equation Monte Carlo (SEMC) quantum transport simulator. In addition to reproducing familiar effects, these simulations exhibit significant effects associated with partial phase-coherence of the carrier wave-function across the well which cannot be modeled via classical or perturbative Golden Rule calculations, and address fundamental transport limitations often overlooked in Golden Rule calculations. However, this analysis also points to simple changes that could significantly improve, although not perfect, the treatment of carrier capture via these latter more conventional approaches.

2010 ◽  
Vol 20 (3) ◽  
pp. 193
Author(s):  
Doan Nhat Quang ◽  
Nguyen Huyen Tung ◽  
Nguyen Trung Hong ◽  
Tran Thi Hai

We present a theoretical study of the effects from symmetric modulation of the envelop wave function on quantum transport in square quantum wells (QWs). Within the variational approach we obtain analytic expressions for the carrier distribution and their scattering in symmetric two-side doped square QWs. Roughness-induced scattering are found significantly weaker than those in the asymmetric one-side doped counterpart. Thus, we propose symmetric modulation of the wave function as an efficient method for enhancement of the roughness-limited QW mobility. Our theory is able to well reproduce the recent experimental data about low-temperature transport of electrons and holes in two-side doped square QWs, e.g., the mobility dependence on the channel width, which have not been explained so far.


1999 ◽  
Vol 08 (01) ◽  
pp. 21-40 ◽  
Author(s):  
M. KIRA ◽  
F. JAHNKE ◽  
S. W. KOCH

Photoluminescence of semiconductor quantum wells is studied using a fully quantized theory for the light-matter interaction. Quantum fluctuations of the light field lead to direct coupling between a coherent excitation and luminescence in other directions. Numerical results for the time evolution of the luminescence spectrum and emission intensity dynamics after a femtosecond pulse excitation are presented.


2008 ◽  
Vol 22 (06) ◽  
pp. 393-404 ◽  
Author(s):  
JIA-HUA LI ◽  
XIANG-YING HAO

We investigate optical bistability in intersubband transitions of an asymmetric semiconductor quantum well structure that has equidistant transitions between three subbands of the system and is placed in a unidirectional cavity. The system is simultaneously coupled by a fundamental field and its second harmonic. The second harmonic field acts as a control field and significantly influences the optical bistability. In addition, the two-color coherent control of optical bistability by the relative phase of the fundamental and the second harmonic fields is shown. The influence of the electronic cooperation parameter on the OB behavior is also discussed. This investigation may be used for optimizing and controlling the optical switching process in the SQW solid-state system, which is much more practical than that in the atomic system because of its flexible design and the controllable interference strength.


2010 ◽  
Vol 7 (7-8) ◽  
pp. 1872-1874
Author(s):  
Carsten Netzel ◽  
Veit Hoffmann ◽  
Tim Wernicke ◽  
Arne Knauer ◽  
Markus Weyers ◽  
...  

1986 ◽  
Vol 33 (2) ◽  
pp. 1420-1423 ◽  
Author(s):  
J. A. Brum ◽  
G. Bastard

2001 ◽  
Vol 692 ◽  
Author(s):  
M. de Leyva-Dios ◽  
L. E. Oliveira

AbstractWe have used the variational and fractional-dimensional space approaches in a study of the virial theorem value and scaling of the shallow-donor binding energies versus donor Bohr radiusin GaAs-(Ga,Al)As semiconductor quantum wells and quantum-well wires. A comparison is made with previous results with respect to exciton states. In the case the donor ground-state wave function may be approximated by a D-dimensional hydrogenic wave function, the virial theorem value equals 2 and the scaling rule for the donor binding energy versus quantum-sized Bohr radius is hyperbolic, both for quantum wells and wires. In contrast, calculations within the variational scheme show that the scaling of the donor binding energies with quantum-sized Bohr radius is in general nonhyperbolic and that the virial theorem value is nonconstant.


Sign in / Sign up

Export Citation Format

Share Document