Simulation of carrier capture in semiconductor quantum wells: Bridging the gap from quantum to classical transport

1997 ◽  
Vol 71 (9) ◽  
pp. 1222-1224 ◽  
Author(s):  
Leonard F. Register ◽  
Karl Hess
1998 ◽  
Vol 09 (04) ◽  
pp. 1211-1233 ◽  
Author(s):  
LEONARD F. REGISTER

A quantum transport-based analysis of the essential physics of carrier capture in semiconductor quantum wells is presented. First, the past progression of models of carrier capture by quantum wells is briefly reviewed. Then carrier capture is modeled using the Schrödinger Equation Monte Carlo (SEMC) quantum transport simulator. In addition to reproducing familiar effects, these simulations exhibit significant effects associated with partial phase-coherence of the carrier wave-function across the well which cannot be modeled via classical or perturbative Golden Rule calculations, and address fundamental transport limitations often overlooked in Golden Rule calculations. However, this analysis also points to simple changes that could significantly improve, although not perfect, the treatment of carrier capture via these latter more conventional approaches.


1986 ◽  
Vol 33 (2) ◽  
pp. 1420-1423 ◽  
Author(s):  
J. A. Brum ◽  
G. Bastard

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

Both rich fundamental physics of microcavities and their intriguing potential applications are addressed in this book, oriented to undergraduate and postgraduate students as well as to physicists and engineers. We describe the essential steps of development of the physics of microcavities in their chronological order. We show how different types of structures combining optical and electronic confinement have come into play and were used to realize first weak and later strong light–matter coupling regimes. We discuss photonic crystals, microspheres, pillars and other types of artificial optical cavities with embedded semiconductor quantum wells, wires and dots. We present the most striking experimental findings of the recent two decades in the optics of semiconductor quantum structures. We address the fundamental physics and applications of superposition light-matter quasiparticles: exciton-polaritons and describe the most essential phenomena of modern Polaritonics: Physics of the Liquid Light. The book is intended as a working manual for advanced or graduate students and new researchers in the field.


1993 ◽  
Vol 47 (20) ◽  
pp. 13880-13883 ◽  
Author(s):  
F. Meseguer ◽  
F. Agulló-Rueda ◽  
C. López ◽  
J. Sánchez-Dehesa ◽  
J. Massies ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document