MAXIMAL TORUS ACTIONS ON SOLVMANIFOLDS AND DOUBLE COSET SPACES

1991 ◽  
Vol 02 (01) ◽  
pp. 67-76
Author(s):  
KYUNG BAI LEE ◽  
FRANK RAYMOND

Any compact, connected Lie group which acts effectively on a closed aspherical manifold is a torus Tk with k ≤ rank of [Formula: see text], the center of π1 (M). When [Formula: see text], the torus action is called a maximal torus action. The authors have previously shown that many closed aspherical manifolds admit maximal torus actions. In this paper, a smooth maximal torus action is constructed on each solvmanifold. They also construct smooth maximal torus actions on some double coset spaces of general Lie groups as applications.

Author(s):  
A. H. Dooley

AbstractIf G is a compact connected Lie group every infinite subset of Ĝ contains an infinite central Λ(p) set, for p < 2 + 2 rank G/(dim G - rank G). A subset R of Ĝ is of type central Λ(2) if and only if the associated set of characters on the maximal torus is of type Λ(2). The dual of a compact connected semisimple Lie group contains infinite sets which are central p-Sidon for all p > 1. Every infinite subset of the dual of Su(2) contains such a set.


Author(s):  
Giancarlo Travaglini

AbstractLet G be a compact, simple, simply connected Lie group. The Lp-norm of a central trigonometric polynomial reduces naturally to a weighted Lp-norm of a trigonometric polynomial on a maximal torus T. The weight is | Δ |2-p, where Δ is the usual Weyl function. If p ≥ 2, we prove that | Δ |2-p satisfies Muckenhoupt's Ap condition if and only if the Lp-norms of the irreducible characters of G are uniformly bounded.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


1988 ◽  
Vol 31 (2) ◽  
pp. 194-199
Author(s):  
L. Magalhães

AbstractIn this paper we give a description of:(1) the Hopf algebra structure of k*(G; L) when G is a compact, connected Lie group and L is a ring of type Q(P) so that H*(G; L) is torsion free;(2) the algebra structure of k*(G2; L) for L = Z2 or Z.


2017 ◽  
Vol 14 (09) ◽  
pp. 1750126
Author(s):  
A. Kara Hansen ◽  
S. Selcuk Sutlu

In this work, we study minimal realization problem for an affine control system [Formula: see text] on a connected Lie group [Formula: see text]. We construct a minimal realization by using a canonical projection and by characterizing indistinguishable points of the system.


1986 ◽  
Vol 99 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Garth I. Gaudry ◽  
Rita Pini

In what follows, G will denote a compact, connected Lie group.Definition. A complex-valued function f ε L2(G) lies in the space A(G) if it can be written in the formwhereThe A(G) norm of f is the infimum of all sums (2) with respect to all decompositions (1).


2007 ◽  
Vol 17 (01) ◽  
pp. 115-139 ◽  
Author(s):  
L. MAGNIN

Integrable complex structures on indecomposable 6-dimensional nilpotent real Lie algebras have been computed in a previous paper, along with normal forms for representatives of the various equivalence classes under the action of the automorphism group. Here we go to the connected simply connected Lie group G0 associated to such a Lie algebra 𝔤. For each normal form J of integrable complex structures on 𝔤, we consider the left invariant complex manifold G = (G0, J) associated to G0 and J. We explicitly compute a global holomorphic chart for G and we write down the multiplication in that chart.


1996 ◽  
Vol 16 (4) ◽  
pp. 703-717
Author(s):  
K. Robert Gutschera

AbstractGiven a connected Lie group G acting ergodically on a space S with finite invariant measure, one can ask when G will contain single elements (or one-parameter subgroups) that still act ergodically. For a compact simple group or the isometry group of the plane, or any group projecting onto such groups, an ergodic action may have no ergodic elements, but for any other connected Lie group ergodic elements will exist. The proof uses the unitary representation theory of Lie groups and Lie group structure theory.


2015 ◽  
Vol 18 (1) ◽  
pp. 489-506 ◽  
Author(s):  
Haibao Duan ◽  
Xuezhi Zhao

Let $G$ be a compact connected Lie group with a maximal torus $T$. In the context of Schubert calculus we present the integral cohomology $H^{\ast }(G/T)$ by a minimal system of generators and relations.


1984 ◽  
Vol 27 (1) ◽  
pp. 25-29 ◽  
Author(s):  
G. Walker ◽  
R. M. W. Wood

In [4] Elmer Rees proves that the symplectic group Sp(n) can be smoothly embedded in Euclidean space with codimension 3n, and the unitary group U(n) with codimension n. These are special cases of a result he obtains for a compact connected Lie group G. The general technique is first to embed G/T, where T is a maximal torus, as a maximal orbit of the adjoint representation of G, and then to extendto an embedding of G by using a maximal orbit of a faithful representation of G. In thisnote, we observe that in the cases G = Sp(n) or SU(n) an improved result is obtained byusing the “symplectic torus” S3 x … x S3 in place of T = S1 x … x S1. As in Rees's construction, the normal bundle of the embedding of G is trivial.


Sign in / Sign up

Export Citation Format

Share Document