COMPUTER SIMULATION OF MAGNETIZATION FOR 3D ELLIPSOIDAL TORUS-SHAPED InAs/GaAs QUANTUM RINGS

2003 ◽  
Vol 14 (04) ◽  
pp. 501-507 ◽  
Author(s):  
YIMING LI

In this paper we computationally investigate the magnetization for three-dimensional (3D) InAs/GaAs nanorings with different radii in an external magnetic field. Our simulation model includes: (i) the effective mass Hamiltonian in nonparabolic approximation, (ii) the position- and energy-dependent quasi-particle effective mass approximation, (iii) the finite hard wall confinement potential, and (iv) the Ben Daniel–Duke boundary conditions. The nonlinear iterative method is applied to solve the 3D problem. With the developed computer simulator, we find the magnetization for the 3D InAs/GaAs ring is a negative function and oscillates nonperiodically. The oscillation saturates when the applied magnetic filed is increased. This result provides an alternative for the nanoring energy shell structure study and is useful for spintronics applications.

1990 ◽  
Vol 04 (15n16) ◽  
pp. 2357-2369 ◽  
Author(s):  
Y. FU ◽  
K. A. CHAO

The effective mass approximation (EMA), when applied to graded crystals, needs a modified form [Formula: see text] for the kinetic energy operator, where 2α + β = −1 and m(z) is the position-dependent effective mass. We have analyzed the energy dispersion of the EMA Hamiltonian, and performed a one-dimensional and a three-dimensional exact calculation to determine the proper value of β. Our conclusion is that when β = −1 the EMA provides better agreement with the exact solutions.


Author(s):  
Lioua Kolsi ◽  
Hakan F. Öztop ◽  
Nidal Abu-Hamdeh ◽  
Borjini Mohamad Naceur ◽  
Habib Ben Assia

Purpose The main purpose of this work is to arrive at a three-dimensional (3D) numerical solution on mixed convection in a cubic cavity with a longitudinally located triangular fin in different sides. Design/methodology/approach The 3D governing equations are solved via finite volume technique by writing a code in FORTRAN platform. The governing parameters are chosen as Richardson number, 0.01 ≤ Ri ≤ 10 and thermal conductivity ratio 0.01 ≤ Rc ≤ 100 for fixed parameters of Pr = 0.7 and Re = 100. Two cases are considered for a lid-driven wall from left to right (V+) and right to left (V−). Findings It is observed that entropy generation due to heat transfer becomes dominant onto entropy generation because of fluid friction. The most important parameter is the direction of the moving lid, and lower values are obtained when the lid moves from right to left. Originality The main originality of this work is to arrive at a solution of a 3D problem of mixed convection and entropy generation for lid-driven cavity with conductive triangular fin attachments.


2018 ◽  
Vol 619 ◽  
pp. A82
Author(s):  
Man Zhang ◽  
Yu Fen Zhou ◽  
Xue Shang Feng ◽  
Bo Li ◽  
Ming Xiong

In this paper, we have used a three-dimensional numerical magnetohydrodynamics model to study the reconnection process between magnetic cloud and heliospheric current sheet. Within a steady-state heliospheric model that gives a reasonable large-scale structure of the solar wind near solar minimum, we injected a spherical plasmoid to mimic a magnetic cloud. When the magnetic cloud moves to the heliospheric current sheet, the dynamic process causes the current sheet to become gradually thinner and the magnetic reconnection begin. The numerical simulation can reproduce the basic characteristics of the magnetic reconnection, such as the correlated/anticorrelated signatures in V and B passing a reconnection exhaust. Depending on the initial magnetic helicity of the cloud, magnetic reconnection occurs at points along the boundary of the two systems where antiparallel field lines are forced together. We find the magnetic filed and velocity in the MC have a effect on the reconnection rate, and the magnitude of velocity can also effect the beginning time of reconnection. These results are helpful in understanding and identifying the dynamic process occurring between the magnetic cloud and the heliospheric current sheet.


Sign in / Sign up

Export Citation Format

Share Document