OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY

2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.

2011 ◽  
Vol 97-98 ◽  
pp. 935-941
Author(s):  
Jian Zhang ◽  
Xing Li Li ◽  
Zhi Peng Li ◽  
Xiang Lin Han

As a kind of typical bottleneck influencing the transportation seriously, the lane reduction has seldomly been investigated with the optimal velocity model. In this paper, we study this issue using the optimal velocity model, in which two kinds of vehicles (fast and slow) are introduced. The asymmetric lane changing rules in the slowdown section and the lane squeezing behaviors at the bottleneck are taken into account. Under the periodic boundary condition, the numerical simulations are performed. The fundamental diagram is obtained. Then, the influences of speed limit and the length of the slowdown section on traffic are discussed in detail from the view of traffic control. The currents are dependent on the speed limit, but independent of the length.


Author(s):  
Xiaoqin Li ◽  
Yanyan Zhou ◽  
Guanghan Peng

Traffic interruption is one of the important factors resulting in traffic jam. Therefore, a new optimal velocity model is established involving the traffic interruption probability for self-expected velocity. Linear stable condition and mKdV equation are deduced with regard to the self-interruption probability of the current optimal velocity from linear stable analysis and nonlinear analysis, respectively. Moreover, numerical simulation reveals that the traffic self-interruption probability of the current optimal velocity can increase traffic stability, which certifies that the traffic self-interruption probability of the current optimal velocity plays important influences on traffic system.


2002 ◽  
Vol 13 (01) ◽  
pp. 1-12 ◽  
Author(s):  
SHIRO SAWADA

A generalized optimal velocity model is analyzed, where the optimal velocity function depends not only on the headway of each car but also the headway of the immediately preceding one. The stability condition of the model is derived by considering a small perturbation around the homogeneous flow solution. The effect of the generalized optimal velocity function is also confirmed with numerical simulations, by examining the hysteresis loop in the headway-velocity phase space, and the relation between the flow and density of cars. In the model with a specific parameter choice, it is found that an intermediate state appears for the movement of cars, where the car keeps a certain velocity whether the headway is short or long. This phenomenon is different from the ordinary stop-and-go state.


2007 ◽  
Vol 18 (05) ◽  
pp. 819-832 ◽  
Author(s):  
ZHIPENG LI ◽  
YUNCAI LIU ◽  
FUQIANG LIU

By introducing the velocity difference between the preceding car and the car before the preceding one into the optimal velocity model (OVM), we present an extended dynamical model which takes into account the next-nearest-neighbor interaction in relative velocity. The stability condition of this model is derived by considering a small perturbation around the uniform flow solution and the validity of our theoretical analysis is also confirmed by direct simulations. The analytic and simulation results indicate that traffic congestion is suppressed efficiently by incorporating the effect of new consideration. Moreover, the effect of the new consideration is investigated by numerical simulation. In particular, the jamming flow, the current-density relation, and the propagation speed of small disturbance are examined in detail by varying various values of the parameter.


Sign in / Sign up

Export Citation Format

Share Document