Effect of Three Japanese Kampo Medicines on Platelet Activation by Monoclonal Anti-platelet Membrane Glycoprotein Antibodies

1994 ◽  
Vol 22 (01) ◽  
pp. 71-76 ◽  
Author(s):  
Toshihiro Kawakatsu ◽  
Shosaku Nomura ◽  
Hirofumi Kido ◽  
Kazuyuki Yamaguchi ◽  
Tsutomu Fukuroi ◽  
...  

We studied the effect of three Japanese kampo medicines on platelet activation by an anti-CD9 monoclonal antibody (NNKY1-19) and an anti-human Fc gamma receptor II monoclonal antibody (NNKY3-2). Sho-saiko-to (TJ-9) and Sairei-to (TJ-114) partially suppressed platelet aggregation induced by NNKYl-19, while Juzen-taiho-to (TJ-48) suppressed aggregation induced by NNKY3-2. TJ-9 and TJ-114 also suppressed collagen-induced aggregation, but TJ-48 did not. Flow cytometry showed that the three medicines did not affect antibody binding to the platelets. Thus, all three kampo medicines suppressed platelet activation by anti-platelet glycoprotein antibodies without inhibiting antibody binding.

Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1112-1119 ◽  
Author(s):  
LK Jennings ◽  
DR Phillips ◽  
WS Walker

Abstract Hybridomas secreting monoclonal antibodies (MoAbs) to human platelet membrane glycoprotein IIb (GPIIb) were prepared by fusing cells of a mouse myeloma line to spleen cells from a BALB/c mouse immunized with purified GPIIb. Six of the hybridomas secreted MoAbs that recognized epitopes on the 23,000-dalton, disulfide-linked subunit of GPIIb, GPIIb beta. All six of these MoAbs agglutinated platelets in the absence of calcium. The agglutination titers of three of the MoAbs, however, were enhanced between 2 and 6 log2 dilutions when titrated in the presence of mmol/L of calcium. The enhancement in titer was the result of MoAb- induced platelet activation followed by platelet aggregation, a reaction that could also be initiated by the monovalent Fab fragments prepared from one of the MoAbs. The MoAbs did not significantly agglutinate platelets from patients with Glanzmann's thrombasthenia, confirming biochemical evidence that there is a paucity of GPIIb beta in the membranes of these cells. Our results show that MoAbs to epitopes on GPIIb beta initiate distinct platelet responses; therefore, they should be useful for studying the ways in which regions of surface glycoproteins are involved in platelet-platelet interactions. In addition, these reagents may prove of value in diagnosing and typing patients with Glanzmann's thrombasthenia.


1987 ◽  
Author(s):  
P W Modderman ◽  
J G Huisman ◽  
J A van Mourik ◽  
A E G Kr ◽  
v d Borne

A receptor for fibrinogen on the platelet GP Ila/lIIb complex is induced by ADP, thrombin and other agonists. To study functional domains on GP Ilb/IIIa, the effects of anti-GP Ilb/IIIa monoclonal antibodies (Mab’s) on platelet function were determined. One of these Mab’s, 6C9, induced platelet aggregation. The antibody binds to the intact GP Ilb/IIIa complex only, not to free GP lib or free GP Ilia. Its epitope is different from that of C17, a Mab that inhibits ADP-induced fibrinogen binding and platelet aggregation. 6C9 induces fibrinogen-mediated aggregation rather than agglutination since 6C9-induced platelet interactions were blocked by treatments that also inhibited the effects of ADP etc., without inhibiting binding of 6C9 itself. 6C9 induces binding of 125I-fibrinogen (35.000 ± 7.300 molecules/platelet, Kd = 1.3 ± 0.4 µM) to unstirred platelets. Binding of fibrinogen was 60 to 80% inhibited by apyrase, which indicates that 6C9-induced fibrinogen binding is largely mediated via ADP released from platelets. In addition, 6C9 induced aggregation of platelets in the absence of extracellular fibrinogen. Mediation of this process by platelet fibrinogen or other a-granule proteins, released upon activation by 6C9, was implicated by the finding that aggregation of washed platelets, but not of platelets to which fibrinogen was added, could be blocked by PGI2. Platelet release was also assessed directly by measuring β-thromboglobulin (α-granules) and (14C) serotonin (dense granules) in the medium of unstirred platelets incubated with 6C9. F(ab')2 fragments of 6C9 only aggregated platelets in the presence of fibrinogen and did not release (14C) serotonin. Moreover, release induced by intact 6C9 was inhibited by anti-GP Ilb/IIIa Mab C17 but not by C17 F(ab’)2, although the latter inhibited ADP-induced platelet aggregation. These data indicate that binding of antibodies to specific sites on GP Ilb/IIIa may induce Fc-dependent platelet activation.This study was supported by the Foundation for Medical Research MEDIGON (grant no. 900-526-057.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 570-577 ◽  
Author(s):  
CG Ruan ◽  
XP Du ◽  
XD Xi ◽  
PA Castaldi ◽  
MC Berndt

Abstract A new monoclonal antibody (MoAb), SZ 2, reactive with the human platelet glycoprotein Ib complex has been produced by the hybridoma technique. SZ 2 immunoprecipitated the components of the glycoprotein Ib complex, glycoprotein Ib and glycoprotein IX, from Triton-X-100- solubilized, periodate-labeled platelets. Western blot analysis indicated that the epitope for SZ 2 was on the alpha-subunit of glycoprotein Ib. Scatchard analysis of SZ 2 binding to formaldehyde- fixed, washed platelets revealed a single class of binding sites with Kd = 6.6 +/- 3.3 X 10(-10) mol/L and 15,200 +/- 4,100 binding sites per platelet (mean +/- SD, n = 10). Intact antibody and its purified (Fab')2 fragments not only inhibited the ristocetin-dependent binding of von Willebrand factor to platelets and ristocetin-induced platelet agglutination but also inhibited platelet aggregation induced by Type I collagen and platelet-activating factor (PAF). SZ 2 inhibited platelet serotonin and beta-thromboglobulin release in response to these stimuli and also platelet thromboxane A2 formation in response to ristocetin and collagen. SZ 2 was without effect on platelet aggregation or release in response to other platelet stimuli such as ADP, thrombin, or arachidonic acid. The inhibition by SZ 2 of collagen- and PAF-induced platelet aggregation is surprising in that Bernard-Soulier syndrome platelets, which lack the glycoprotein Ib complex, respond normally to both these stimuli. SZ 2 was unreactive toward Bernard-Soulier syndrome platelets, as evaluated by fluorescence-associated cell sorting, and had no effect on the collagen- and PAF-induced aggregation of Bernard- Soulier syndrome platelets. The combined results suggest that the inhibition by SZ 2 of collagen- and PAF-induced aggregation of normal platelets is steric and are consistent with the glycoprotein Ib complex and the platelet collagen and PAF receptor(s) being adjacent in the human platelet plasma membrane.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1112-1119
Author(s):  
LK Jennings ◽  
DR Phillips ◽  
WS Walker

Hybridomas secreting monoclonal antibodies (MoAbs) to human platelet membrane glycoprotein IIb (GPIIb) were prepared by fusing cells of a mouse myeloma line to spleen cells from a BALB/c mouse immunized with purified GPIIb. Six of the hybridomas secreted MoAbs that recognized epitopes on the 23,000-dalton, disulfide-linked subunit of GPIIb, GPIIb beta. All six of these MoAbs agglutinated platelets in the absence of calcium. The agglutination titers of three of the MoAbs, however, were enhanced between 2 and 6 log2 dilutions when titrated in the presence of mmol/L of calcium. The enhancement in titer was the result of MoAb- induced platelet activation followed by platelet aggregation, a reaction that could also be initiated by the monovalent Fab fragments prepared from one of the MoAbs. The MoAbs did not significantly agglutinate platelets from patients with Glanzmann's thrombasthenia, confirming biochemical evidence that there is a paucity of GPIIb beta in the membranes of these cells. Our results show that MoAbs to epitopes on GPIIb beta initiate distinct platelet responses; therefore, they should be useful for studying the ways in which regions of surface glycoproteins are involved in platelet-platelet interactions. In addition, these reagents may prove of value in diagnosing and typing patients with Glanzmann's thrombasthenia.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 113-120 ◽  
Author(s):  
TW Chow ◽  
JD Hellums ◽  
JL Moake ◽  
MH Kroll

Platelets subjected to elevated levels of fluid shear stress in the absence of exogenous agonists will aggregate. Shear stress-induced aggregation requires von Willebrand factor (vWF) multimers, extracellular calcium (Ca2+), adenosine diphosphate (ADP), and platelet membrane glycoprotein (GP)Ib and GPIIb-IIIa. The sequence of interaction of vWF multimers with platelet surface receptors and the effect of these interactions on platelet activation have not been determined. To elucidate the mechanism of shear stress-induced platelet aggregation, suspensions of washed platelets were subjected to different levels of uniform shear stress (15 to 120 dyne/cm2) in an optically modified cone and plate viscometer. Cytoplasmic ionized calcium ([Ca2+]i) and aggregation of platelets were monitored simultaneously during the application of shear stress; [Ca2+]i was measured using indo-1 loaded platelets and aggregation was measured as changes in light transmission. Basal [Ca2+]i was approximately 60 to 100 nmol/L. An increase of [Ca2+]i (up to greater than 1,000 nmol/L) was accompanied by synchronous aggregation, and both responses were dependent on the shear force and the presence of vWF multimers. EGTA chelation of extracellular Ca2+ completely inhibited vWF-mediated [Ca2+]i and aggregation responses to shear stress. Aurin tricarboxylic acid, which blocks the GPIb recognition site on the vWF monomer, and 6D1, a monoclonal antibody to GPIb, also completely inhibited platelet responses to shear stress. The tetrapeptide RGDS and the monoclonal antibody 10E5, which inhibit vWF binding to GPIIb-IIIa, partially inhibited shear stress-induced [Ca2+]i and aggregation responses. The combination of creatine phosphate/creatine phosphokinase, which converts ADP to adenosine triphosphate and blocks the effect of ADP released from stimulated platelets, inhibited shear stress-induced platelet aggregation without affecting the increase of [Ca2+]i. Neither the [Ca2+]i nor aggregation response to shear stress was inhibited by blocking platelet cyclooxygenase metabolism with acetylsalicylic acid. These results indicate that GPIb and extracellular Ca2+ are absolutely required for vWF-mediated [Ca2+]i and aggregation responses to imposed shear stress, and that the interaction of vWF multimers with GPIIb-IIIa potentiates these responses. Shear stress-induced elevation of platelet [Ca2+]i, but not aggregation, is independent of the effects of release ADP, and both responses occur independently of platelet cyclooxygenase metabolism. These results suggest that shear stress induces the binding of vWF multimers to platelet GPIb and this vWF-GPIb interaction causes an increase of [Ca2+]i and platelet aggregation, both of which are potentiated by vWF binding to the platelet GPIIb-IIIa complex.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 570-577 ◽  
Author(s):  
CG Ruan ◽  
XP Du ◽  
XD Xi ◽  
PA Castaldi ◽  
MC Berndt

A new monoclonal antibody (MoAb), SZ 2, reactive with the human platelet glycoprotein Ib complex has been produced by the hybridoma technique. SZ 2 immunoprecipitated the components of the glycoprotein Ib complex, glycoprotein Ib and glycoprotein IX, from Triton-X-100- solubilized, periodate-labeled platelets. Western blot analysis indicated that the epitope for SZ 2 was on the alpha-subunit of glycoprotein Ib. Scatchard analysis of SZ 2 binding to formaldehyde- fixed, washed platelets revealed a single class of binding sites with Kd = 6.6 +/- 3.3 X 10(-10) mol/L and 15,200 +/- 4,100 binding sites per platelet (mean +/- SD, n = 10). Intact antibody and its purified (Fab')2 fragments not only inhibited the ristocetin-dependent binding of von Willebrand factor to platelets and ristocetin-induced platelet agglutination but also inhibited platelet aggregation induced by Type I collagen and platelet-activating factor (PAF). SZ 2 inhibited platelet serotonin and beta-thromboglobulin release in response to these stimuli and also platelet thromboxane A2 formation in response to ristocetin and collagen. SZ 2 was without effect on platelet aggregation or release in response to other platelet stimuli such as ADP, thrombin, or arachidonic acid. The inhibition by SZ 2 of collagen- and PAF-induced platelet aggregation is surprising in that Bernard-Soulier syndrome platelets, which lack the glycoprotein Ib complex, respond normally to both these stimuli. SZ 2 was unreactive toward Bernard-Soulier syndrome platelets, as evaluated by fluorescence-associated cell sorting, and had no effect on the collagen- and PAF-induced aggregation of Bernard- Soulier syndrome platelets. The combined results suggest that the inhibition by SZ 2 of collagen- and PAF-induced aggregation of normal platelets is steric and are consistent with the glycoprotein Ib complex and the platelet collagen and PAF receptor(s) being adjacent in the human platelet plasma membrane.


1987 ◽  
Author(s):  
L De Marco ◽  
M Mazzucato ◽  
M G Del Ben ◽  
U Budde ◽  
A B Federici ◽  
...  

Three preparations of purified von Willebrand factor (vWF), obtained from unrelated patients affected by type IIB von Willebrand disease, were found to have normal sialic acid content (between 129-190 nmoles/mg of vWF, as compared to 158 ± 17 nmoles/mg in four normal preparations) and to induce platelet aggregation in the presence of physiologic levels of divalent cations and without addition of ristocetin. A monoclonal antibody that blocks the vWF binding domain of the platelet glycoprotein (GP) Ib caused complete inhibition of IIB vWF-induced aggregation. On the contrary, a monoclonal antibody that blocks the receptor for adhesive proteins on the platelet GPIIb/IIIa complex failed to inhibit the initial response of platelets to high concentration of IIB vWF Moreover, IIB vWF caused agglutination of formalin-fixed platelets that was blocked only by the anti-GPIb antibody, suggesting that the binding of vWF to GPIb, even in the absence of ristocetin, results in platelet-platelet interaction that is followed by exposure of the GPIIb/IIIa receptors for adhesive proteins. Endogenous ADP, normally active platelet metabolism and fibrinogen binding to GPIIb/IIIa were necessary for maximal and irreversible platelet aggregation. In the absence of fibrinogen, however, aggregation was mediated by vWF binding to GPIIb/IIIa. A 52/48 kDa tryptic fragment containing the GPIb binding domain of normal vWF completely blocked the aggregation induced by all three IIB vWF preparations. The present study defines in detail the mechanisms involved in IIB vWF-induced platelet aggregation. Moreover, it establishes that the GPIb binding domain of normal and IIB vWF are closely related and that desialylation is not required for the direct interaction of IIB vWF with GPIb.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 113-120 ◽  
Author(s):  
TW Chow ◽  
JD Hellums ◽  
JL Moake ◽  
MH Kroll

Abstract Platelets subjected to elevated levels of fluid shear stress in the absence of exogenous agonists will aggregate. Shear stress-induced aggregation requires von Willebrand factor (vWF) multimers, extracellular calcium (Ca2+), adenosine diphosphate (ADP), and platelet membrane glycoprotein (GP)Ib and GPIIb-IIIa. The sequence of interaction of vWF multimers with platelet surface receptors and the effect of these interactions on platelet activation have not been determined. To elucidate the mechanism of shear stress-induced platelet aggregation, suspensions of washed platelets were subjected to different levels of uniform shear stress (15 to 120 dyne/cm2) in an optically modified cone and plate viscometer. Cytoplasmic ionized calcium ([Ca2+]i) and aggregation of platelets were monitored simultaneously during the application of shear stress; [Ca2+]i was measured using indo-1 loaded platelets and aggregation was measured as changes in light transmission. Basal [Ca2+]i was approximately 60 to 100 nmol/L. An increase of [Ca2+]i (up to greater than 1,000 nmol/L) was accompanied by synchronous aggregation, and both responses were dependent on the shear force and the presence of vWF multimers. EGTA chelation of extracellular Ca2+ completely inhibited vWF-mediated [Ca2+]i and aggregation responses to shear stress. Aurin tricarboxylic acid, which blocks the GPIb recognition site on the vWF monomer, and 6D1, a monoclonal antibody to GPIb, also completely inhibited platelet responses to shear stress. The tetrapeptide RGDS and the monoclonal antibody 10E5, which inhibit vWF binding to GPIIb-IIIa, partially inhibited shear stress-induced [Ca2+]i and aggregation responses. The combination of creatine phosphate/creatine phosphokinase, which converts ADP to adenosine triphosphate and blocks the effect of ADP released from stimulated platelets, inhibited shear stress-induced platelet aggregation without affecting the increase of [Ca2+]i. Neither the [Ca2+]i nor aggregation response to shear stress was inhibited by blocking platelet cyclooxygenase metabolism with acetylsalicylic acid. These results indicate that GPIb and extracellular Ca2+ are absolutely required for vWF-mediated [Ca2+]i and aggregation responses to imposed shear stress, and that the interaction of vWF multimers with GPIIb-IIIa potentiates these responses. Shear stress-induced elevation of platelet [Ca2+]i, but not aggregation, is independent of the effects of release ADP, and both responses occur independently of platelet cyclooxygenase metabolism. These results suggest that shear stress induces the binding of vWF multimers to platelet GPIb and this vWF-GPIb interaction causes an increase of [Ca2+]i and platelet aggregation, both of which are potentiated by vWF binding to the platelet GPIIb-IIIa complex.


1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


1991 ◽  
Vol 65 (04) ◽  
pp. 432-437 ◽  
Author(s):  
A W J Stuttle ◽  
M J Powling ◽  
J M Ritter ◽  
R M Hardisty

SummaryThe anti-platelet monoclonal antibody P256 is currently undergoing development for in vivo detection of thrombus. We have examined the actions of P256 and two fragments on human platelet function. P256, and its divalent fragment, caused aggregation at concentrations of 10−9−3 × 10−8 M. A monovalent fragment of P256 did not cause aggregation at concentrations up to 10−7 M. P256–induced platelet aggregation was dependent upon extracellular calcium ions as assessed by quin2 fluorescence. Indomethacin partially inhibited platelet aggregation and completely inhibited intracellular calcium mobilisation. Apyrase caused partial inhibition of aggregation. Aggregation induced by the divalent fragment was dependent upon fibrinogen and was inhibited by prostacyclin. Aggregation induced by the whole antibody was only partially dependent upon fibrinogen, but was also inhibited by prostacyclin. P256 whole antibody was shown, by flow cytometry, to induce fibrinogen binding to indomethacin treated platelets. Monovalent P256 was shown to be a specific antagonist for aggregation induced by the divalent forms. In–111–labelled monovalent fragment bound to gel-filtered platelets in a saturable and displaceable manner. Monovalent P256 represents a safer form for in vivo applications


Sign in / Sign up

Export Citation Format

Share Document