Texture zeros of neutrino mass matrix with seesaw mechanism and leptogenesis

2014 ◽  
Vol 29 (08) ◽  
pp. 1450038 ◽  
Author(s):  
T. Phong Nguyen

We study the seesaw realization of seven textures of the neutrino mass matrix with two zeros, which were presented by Frampton, Glashow and Marfatia. It is found that once the Dirac neutrino mass matrix is fixed, only texture A2 out of the seven textures is realized by the seesaw with three different heavy Majorana right-handed neutrino (RHN) mass matrices. As a consequence of the seesaw mechanism, the out of equilibrium decay of the lightest RHN generates a lepton number asymmetry. By the leptogenesis process, this lepton asymmetry is converted to the Baryon Asymmetry of the Universe (BAU). By a proper choice of the parameter space of the model which satisfied the low energy experimental data, the BAU is successfully explained by both flavor dependent and flavor independent leptogenesis of the model. It is also shown that the predictions of Dirac charge parity (CP) violation phase, δ CP , for some fixed parameters of high energy physics can be constrained by the current observation of baryon asymmetry.

2010 ◽  
Vol 25 (33) ◽  
pp. 2837-2848 ◽  
Author(s):  
S. DEV ◽  
SURENDER VERMA

We investigate the CP asymmetry for a hybrid texture of the neutrino mass matrix predicted by Q8 family symmetry in the context of the type-I seesaw mechanism and examine its consequences for leptogenesis. We, also, calculate the resulting Baryon Asymmetry of the Universe (BAU) for this texture.


2002 ◽  
Vol 17 (26) ◽  
pp. 1725-1734 ◽  
Author(s):  
TAKESHI FUKUYAMA ◽  
NOBUCHIKA OKADA

We study the leptogenesis scenario in models with multi-Higgs doublets. It is pointed out that the washing-out process through the effective dimension-five interactions, which has not been taken into account seriously in the conventional scenario, can be effective, and the resultant baryon asymmetry can be exponentially suppressed. This fact implies new possible scenario where the observed baryon asymmetry is the remnant of the washed out lepton asymmetry which was originally much larger than the one in the conventional scenario. Our new scenario is applicable to some neutrino mass matrix models which predict too large CP-violating parameter and makes them viable through the washing-out process.


2012 ◽  
Vol 27 (26) ◽  
pp. 1250151 ◽  
Author(s):  
H. B. BENAOUM

Recent experiments indicate a departure from the exact tri-bimaximal mixing by measure ring definitive nonzero value of θ13. Within the framework of type I seesaw mechanism, we reconstruct the triangular Dirac neutrino mass matrix from the μ - τ symmetric mass matrix. The deviation from μ - τ symmetry is then parametrized by adding dimensionless parameters yi in the triangular mass matrix. In this parametrization of the neutrino mass matrix, the nonzero value θ13 is controlled by Δy = y4 - y6. We also calculate the resulting leptogenesis and show that the triangular texture can generate the observed baryon asymmetry in the universe via leptogenesis scenario.


2011 ◽  
Vol 26 (07) ◽  
pp. 501-514 ◽  
Author(s):  
S. DEV ◽  
SHIVANI GUPTA ◽  
RADHA RAMAN GAUTAM

We study the existence of one/two texture zeros or one/two vanishing minors in the neutrino mass matrix with μτ symmetry. In the basis where the charged lepton mass matrix and the Dirac neutrino mass matrix are diagonal, the one/two zeros or one/two vanishing minors on the right-handed Majorana mass matrix having μτ symmetry will propagate via seesaw mechanism as one/two vanishing minors or one/two texture zeros in the neutrino mass matrix with μτ symmetry respectively. It is found that only five such texture structures of the neutrino mass matrix are phenomenologically viable. For tribimaximal mixing, these texture structures reduce the number of free parameters to one. Interesting predictions are obtained for the effective Majorana mass Mee, the absolute mass scale and the Majorana-type CP violating phases.


2000 ◽  
Vol 478 (1-3) ◽  
pp. 215-223 ◽  
Author(s):  
E.Kh. Akhmedov ◽  
G.C. Branco ◽  
M.N. Rebelo

2011 ◽  
Vol 26 (08) ◽  
pp. 567-574 ◽  
Author(s):  
ASAN DAMANIK

We construct a neutrino mass matrix Mν via a seesaw mechanism with perturbed invariant under a cyclic permutation by introducing a parameter δ into the diagonal elements of Mν with the assumption that trace of the perturbed Mν is equal to trace of the unperturbed Mν. We found that the perturbed neutrino mass matrices Mν can predict the mass-squared difference [Formula: see text] with the possible hierarchy of neutrino mass is normal or inverted hierarchy. By using the advantages of the mass-squared differences and mixing parameters data from neutrino oscillation experiments, we then have neutrino masses in inverted hierarchy with masses: |m1| = 0.101023 eV , |m2| = 0.101428 eV and |m3| = 0.084413 eV .


2016 ◽  
Vol 31 (06) ◽  
pp. 1650008 ◽  
Author(s):  
Rupam Kalita ◽  
Debasish Borah

In this paper, we study all possible neutrino mass matrices with one zero element and two equal nonzero elements, known as hybrid texture neutrino mass matrices. In the diagonal charged lepton basis, we consider 39 such possible cases which are consistent with the latest neutrino data. Using the two constraints on neutrino mass matrix elements imposed by hybrid textures, we numerically evaluate the neutrino parameters like the lightest neutrino mass [Formula: see text], one Dirac CP phase [Formula: see text] and two Majorana CP phases [Formula: see text], [Formula: see text] by using the global fit [Formula: see text] values of three mixing angles and two mass squared differences. We then constrain this parameter space by using the cosmological upper bound on the sum of absolute neutrino masses given by Planck experiment. We also calculate the effective neutrino mass [Formula: see text] for this region of parameter space which can have relevance in future neutrinoless double beta decay experiments. We finally discriminate between these hybrid texture mass matrices from the requirement of producing correct baryon asymmetry through type I seesaw leptogenesis. We also constrain the light neutrino parameter space as well as the lightest right-handed neutrino mass from the constraint on baryon asymmetry of the Universe from Planck experiment.


2022 ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada

Abstract We discuss a linear seesaw model with as minimum field content as possible, introducing a modular $S_4$ with the help of gauged $U(1)_{B-L}$ symmetries. Due to rank two neutrino mass matrix, we have a vanishing neutrino mass eigenvalue, and only the normal mass hierarchy of neutrinos is favored through the modular $S_4$ symmetry.In our numerical $\Delta \chi^2$ analysis, we especially find rather sharp prediction on sum of neutrino masses to be around $60$ meV in addition to the other predictions. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


Sign in / Sign up

Export Citation Format

Share Document