Joule–Thomson expansion in charged AdS black hole surrounded by a cosmological fluid in Rainbow Gravity

Author(s):  
G. V. Silva ◽  
V. B. Bezerra ◽  
J. P. Morais Graça ◽  
I. P. Lobo

In this work, we analyze the Joule–Thomson expansion in an AdS Reissner–Nordström black hole, surrounded by an average cosmological fluid, in Rainbow Gravity. We plot the graphs corresponding to the inversion temperature curves and numerically calculate the ratio between the minimum of the inversion temperature and the critical temperature, with the aim of investigating how Rainbow Gravity alters such behaviors compared to General Relativity.

2020 ◽  
Vol 17 (09) ◽  
pp. 2050136 ◽  
Author(s):  
M. Rostami ◽  
J. Sadeghi ◽  
S. Miraboutalebi ◽  
A. A. Masoudi ◽  
B. Pourhassan

In this paper, the thermodynamical properties and the phase transitions of the charged accelerating anti-de Sitter (AdS) black holes are investigated in the framework of the [Formula: see text] gravity. By studying the conditions for the phase transitions, it has been shown that the [Formula: see text] criticality and the van der Waals like phase transitions can be achieved for [Formula: see text]. The Joule–Thomson expansion effects are also examined for the charged accelerating AdS black holes of the [Formula: see text] gravity. Here, we derive the inversion temperatures as well as the inversion curves. Then, we determine the position of the reverse point for different values of mass [Formula: see text] and parameter [Formula: see text] for the corresponding black hole. At this point, the Joule–Thompson coefficient is zero. So, in such case, we can say that such point is very important for the finding of cooling–heating regions. Finally, we calculate the ratio of minimum inversion temperature and critical temperature for such black hole.


2020 ◽  
Author(s):  
Vitaly Kuyukov

In this paper, we analyze the singularity of a black hole based on a modification of general relativity. There is an equilibrium condition on the Planck scale. This makes it possible to study the thermodynamics of the singularity of a black hole.


Author(s):  
Lawrence H. Starkey

For two centuries Kant's first Critique has nourished various turns against transcendent metaphysics and realism. Kant was scandalized by reason's impotence in confronting infinity (or finitude) as seen in the divisibility of particles and in spatial extension and time. Therefore, he had to regard the latter as subjective and reality as imponderable. In what follows, I review various efforts to rationalize Kant's antinomies-efforts that could only flounder before the rise of Einstein's general relativity and Hawking's blackhole cosmology. Both have undercut the entire Kantian tradition by spawning highly probable theories for suppressing infinities and actually resolving these perplexities on a purely physical basis by positing curvatures of space and even of time that make them reëntrant to themselves. Heavily documented from primary sources in physics, this paper displays time’s curvature as its slowing down near very massive bodies and even freezing in a black hole from which it can reëmerge on the far side, where a new universe can open up. I argue that space curves into a double Möbius strip until it loses one dimension in exchange for another in the twin universe. It shows how 10-dimensional GUTs and the triple Universe, time/charge/parity conservation, and strange and bottom particle families and antiparticle universes, all fit together.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2014 ◽  
Vol 484 ◽  
pp. 012025
Author(s):  
M J Valtonen ◽  
A Gopakumar ◽  
S Mikkola ◽  
K Wiik ◽  
H J Lehto

2021 ◽  
Author(s):  
◽  
Del Rajan

<p>In this thesis, we explore the subject of complex spacetimes, in which the mathematical theory of complex manifolds gets modified for application to General Relativity. We will also explore the mysterious Newman-Janis trick, which is an elementary and quite short method to obtain the Kerr black hole from the Schwarzschild black hole through the use of complex variables. This exposition will cover variations of the Newman-Janis trick, partial explanations, as well as original contributions.</p>


2008 ◽  
Author(s):  
Masaru Shibata ◽  
Keisuke Taniguchi ◽  
Koji Uryū ◽  
Ye-Fei Yuan ◽  
Xiang-Dong Li ◽  
...  

2021 ◽  
Author(s):  
Gerard ’t Hooft

It is suspected that the quantum evolution equations describing the micro-world as we know it are of a special kind that allows transformations to a special set of basis states in Hilbert space, such that, in this basis, the evolution is given by elements of the permutation group. This would restore an ontological interpretation. It is shown how, at low energies per particle degree of freedom, almost any quantum system allows for such a transformation. This contradicts Bell’s theorem, and we emphasise why some of the assumptions made by Bell to prove his theorem cannot hold for the models studied here. We speculate how an approach of this kind may become helpful in isolating the most likely version of the Standard Model, combined with General Relativity. A link is suggested with black hole physics.


Sign in / Sign up

Export Citation Format

Share Document