PROPAGATOR FOR THE RELATIVISTIC SPINNING PARTICLE VIA FUNCTIONAL INTEGRAL OVER TRAJECTORIES

1988 ◽  
Vol 03 (16) ◽  
pp. 1551-1559 ◽  
Author(s):  
A. YU. ALEKSEEV ◽  
S.L. SHATASHVILI

A spin factor is defined by means of the canonical 2-form on the coadjoint orbit of the SO (d+1) group. Including this spin factor in the definition of the path integral leads to the correct propagator for a system of arbitrary spin in a space of dimension d.

2006 ◽  
Vol 21 (32) ◽  
pp. 6525-6574 ◽  
Author(s):  
ANDRÉ VAN TONDER

We discuss a covariant functional integral approach to the quantization of the bosonic string. In contrast to approaches relying on noncovariant operator regularizations, interesting operators here are true tensor objects with classical transformation laws, even on target spaces where the theory has a Weyl anomaly. Since no implicit noncovariant gauge choices are involved in the definition of the operators, the anomaly is clearly separated from the issue of operator renormalization and can be understood in isolation, instead of infecting the latter as in other approaches. Our method is of wider applicability to covariant theories that are not Weyl invariant, but where covariant tensor operators are desired. After constructing covariantly regularized vertex operators, we define a class of background-independent path integral measures suitable for string quantization. We show how gauge invariance of the path integral implies the usual physical state conditions in a very conceptually clean way. We then discuss the construction of the BRST action from first principles, obtaining some interesting caveats relating to its general covariance. In our approach, the expected BRST related anomalies are encoded somewhat differently from other approaches. We conclude with an unusual but amusing derivation of the value D = 26 of the critical dimension.


1994 ◽  
Vol 327 (3-4) ◽  
pp. 274-278 ◽  
Author(s):  
Jin-Ho Cho ◽  
Seungjoon Hyun ◽  
Hyuk-jae Lee

1995 ◽  
Vol 36 (4) ◽  
pp. 1602-1615 ◽  
Author(s):  
T. Boudjedaa ◽  
A. Bounames ◽  
L. Chetouani ◽  
T. F. Hammann ◽  
Kh. Nouicer

Author(s):  
Jean Zinn-Justin

Functional integrals are basic tools to study first quantum mechanics (QM), and quantum field theory (QFT). The path integral formulation of QM is well suited to the study of systems with an arbitrary number of degrees of freedom. It makes a smooth transition between nonrelativistic QM and QFT possible. The Euclidean functional integral also emphasizes the deep connection between QFT and the statistical physics of systems with short-range interactions near a continuous phase transition. The path integral representation of the matrix elements of the quantum statistical operator e-β H for Hamiltonians of the simple separable form p2/2m +V(q) is derived. To the path integral corresponds a functional measure and expectation values called correlation functions, which are generalized moments, and related to quantum observables, after an analytic continuation in time. The path integral corresponding to the Euclidean action of a harmonic oscillator, to which is added a time-dependent external force, is calculated explicitly. The result is used to generate Gaussian correlation functions and also to reduce the evaluation of path integrals to perturbation theory. The path integral also provides a convenient tool to derive semi-classical approximations.


2006 ◽  
Vol 21 (17) ◽  
pp. 3525-3563 ◽  
Author(s):  
ANDRÉ VAN TONDER

We present a coordinate-invariant approach, based on a Pauli–Villars measure, to the definition of the path integral in two-dimensional conformal field theory. We discuss some advantages of this approach compared to the operator formalism and alternative path integral approaches. We show that our path integral measure is invariant under conformal transformations and field reparametrizations, in contrast to the measure used in the Fujikawa calculation, and we show the agreement, despite different origins, of the conformal anomaly in the two approaches. The natural energy–momentum in the Pauli–Villars approach is a true coordinate-invariant tensor quantity, and we discuss its nontrivial relationship to the corresponding nontensor object arising in the operator formalism, thus providing a novel explanation within a path integral context for the anomalous Ward identities of the latter. We provide a direct calculation of the nontrivial contact terms arising in expectation values of certain energy–momentum products, and we use these to perform a simple consistency check confirming the validity of the change of variables formula for the path integral. Finally, we review the relationship between the conformal anomaly and the energy–momentum two-point functions in our formalism.


Author(s):  
Arkady A. Tseytlin

We discuss possible definition of open string path integral in the presence of additional boundary couplings corresponding to the presence of masses at the ends of the string. These couplings are not conformally invariant implying that as in a non-critical string case one is to integrate over the one-dimensional metric or reparametrizations of the boundary. We compute the partition function on the disc in the presence of an additional constant gauge field background and comment on the structure of the corresponding scattering amplitudes.


2000 ◽  
Vol 14 (22n23) ◽  
pp. 2293-2297
Author(s):  
R. CASALBUONI

In this paper we study the problem of quantizing theories defined over a nonclassical configuration space. If one follows the path-integral approach, the first problem one is faced with is the one of definition of the integral over such spaces. We consider this problem and we show how to define an integration which respects the physical principle of composition of the probability amplitudes for a very large class of algebras.


Sign in / Sign up

Export Citation Format

Share Document