scholarly journals MATRIX MODELS AND NON-PERTURBATIVE STRING PROPAGATION IN TWO-DIMENSIONAL BLACK HOLE BACKGROUNDS

1993 ◽  
Vol 08 (14) ◽  
pp. 1331-1341 ◽  
Author(s):  
SUMIT R. DAS

We identify a quantity in the c = 1 matrix model which describes the wave function for physical scattering of a tachyon from a black hole of the two-dimensional critical string theory. At the semiclassical level this quantity corresponds to the usual picture of a wave coming in from infinity, part of which enters the black hole becoming singular at the singularity, while the rest is scattered back to infinity, with nothing emerging from the white hole. We find, however, that the exact non-perturbative wave function is non-singular at the singularity and appears to end up in the asymptotic region "behind" the singularity.

1993 ◽  
Vol 08 (01) ◽  
pp. 69-78 ◽  
Author(s):  
SUMIT R. DAS

We show that an integral transform of the fluctuations of the collective field of the d=1 matrix model satisfy the same linearized equation as that of the massless “tachyon” in the black hole background of the two-dimensional critical string. This suggests that the d=1 matrix model may provide a non-perturbative description of black holes in two-dimensional string theory.


2004 ◽  
Vol 2004 (06) ◽  
pp. 033-033 ◽  
Author(s):  
Dan Israel ◽  
Costas Kounnas ◽  
Ari Pakman ◽  
Jan Troost

2007 ◽  
Vol 85 (6) ◽  
pp. 619-623
Author(s):  
M Rozali

We review the study of D-particles in the two-dimensional black-hole background, concentrating on aspects of the dynamics that are sensitive to the region behind the horizon. Surprisingly, the portion of the trajectory behind the horizon appears to an asymptotic observer as ghost D-particle. This suggests a way of constructing a matrix model for the Lorentzian black-hole background. PACS No.: 11.25.Uv


2002 ◽  
Vol 622 (1-2) ◽  
pp. 141-188 ◽  
Author(s):  
Vladimir Kazakov ◽  
Ivan K. Kostov ◽  
David Kutasov

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jorge G. Russo ◽  
Miguel Tierz

Abstract We study a unitary matrix model of the Gross-Witten-Wadia type, extended with the addition of characteristic polynomial insertions. The model interpolates between solvable unitary matrix models and is the unitary counterpart of a deformed Cauchy ensemble. Exact formulas for the partition function and Wilson loops are given in terms of Toeplitz determinants and minors and large N results are obtained by using Szegö theorem with a Fisher-Hartwig singularity. In the large N (planar) limit with two scaled couplings, the theory exhibits a surprisingly intricate phase structure in the two-dimensional parameter space.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


Sign in / Sign up

Export Citation Format

Share Document