scholarly journals MIRROR MAPS AND INSTANTON SUMS FOR COMPLETE INTERSECTIONS IN WEIGHTED PROJECTIVE SPACE

1994 ◽  
Vol 09 (20) ◽  
pp. 1807-1817 ◽  
Author(s):  
ALBRECHT KLEMM ◽  
STEFAN THEISEN

We consider a class of Calabi-Yau compactifications which are constructed as a complete intersection in weighted projective space. For manifolds with one Kähler modulus we construct the mirror manifolds and calculate the instanton sum.

2013 ◽  
Vol 150 (3) ◽  
pp. 369-395 ◽  
Author(s):  
Damian Brotbek

AbstractIn this paper we examine different problems regarding complete intersection varieties of high multidegree in a smooth complex projective variety. First we prove an existence theorem for jet differential equations that generalizes a theorem of Diverio. Then we show how one can deduce hyperbolicity for generic complete intersections of high multidegree and high codimension from the known results on hypersurfaces. Finally, motivated by a conjecture of Debarre, we focus on the positivity of the cotangent bundle of complete intersections, and prove some results towards this conjecture; among other things, we prove that a generic complete intersection surface of high multidegree in a projective space of dimension at least four has an ample cotangent bundle.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250049
Author(s):  
PAUL L. LARSEN

A curve on a projective variety is called movable if it belongs to an algebraic family of curves covering the variety. We consider when the cone of movable curves can be characterized without existence statements of covering families by studying the complete intersection cone on a family of blow-ups of complex projective space, including the moduli space of stable six-pointed rational curves and the permutohedral or Losev–Manin moduli space of four-pointed rational curves. Our main result is that the movable and complete intersection cones coincide for the toric members of this family, but differ for the non-toric member, the moduli space of six-pointed rational curves. The proof is via an algorithm that applies in greater generality. We also give an example of a projective toric threefold for which these two cones differ.


2003 ◽  
Vol 46 (2) ◽  
pp. 159-173 ◽  
Author(s):  
Maximilian Kreuzer ◽  
Erwin Riegler ◽  
David A. Sahakyan

2005 ◽  
Vol 57 (2) ◽  
pp. 400-415
Author(s):  
Sindi Sabourin

AbstractIn this paper, we find configurations of points in n-dimensional projective space (Pn) which simultaneously generalize both k-configurations and reduced 0-dimensional complete intersections. Recall that k-configurations in P2 are disjoint unions of distinct points on lines and in Pn are inductively disjoint unions of k-configurations on hyperplanes, subject to certain conditions. Furthermore, the Hilbert function of a k-configuration is determined from those of the smaller k-configurations. We call our generalized constructions kD-configurations, where D = {d1, … , dr} (a set of r positive integers with repetition allowed) is the type of a given complete intersection in Pn. We show that the Hilbert function of any kD-configuration can be obtained from those of smaller kD-configurations. We then provide applications of this result in two different directions, both of which are motivated by corresponding results about k-configurations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Jacob L. Bourjaily ◽  
Andrew J. McLeod ◽  
Cristian Vergu ◽  
Matthias Volk ◽  
Matt von Hippel ◽  
...  

2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).


2011 ◽  
Vol 22 (04) ◽  
pp. 515-534 ◽  
Author(s):  
IUSTIN COANDĂ

We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].


2009 ◽  
Vol 20 (06) ◽  
pp. 791-801 ◽  
Author(s):  
S. BOISSIÈRE ◽  
E. MANN ◽  
F. PERRONI

We prove the cohomological crepant resolution conjecture of Ruan for the weighted projective space ℙ(1,3,4,4). To compute the quantum corrected cohomology ring, we combine the results of Coates–Corti–Iritani–Tseng on ℙ(1,1,1,3) and our previous results.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550104
Author(s):  
Philippe Ellia

A multiple structure [Formula: see text] on a smooth curve [Formula: see text] is said to be primitive if [Formula: see text] is locally contained in a smooth surface. We give some numerical conditions for a curve [Formula: see text] to be a primitive set theoretical complete intersection (i.e. to have a primitive structure which is a complete intersection).


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


Sign in / Sign up

Export Citation Format

Share Document