scholarly journals BOGOLUBOV'S RECURSION AND INTEGRABILITY OF EFFECTIVE ACTIONS

2001 ◽  
Vol 16 (09) ◽  
pp. 1531-1558 ◽  
Author(s):  
A. GERASIMOV ◽  
A. MOROZOV ◽  
K. SELIVANOV

The Hopf algebra of Feynman diagrams, analyzed by A. Connes and D. Kreimer, is considered from the perspective of the theory of effective actions and generalized τ-functions, which describes the action of diffeomorphism and shift groups in the moduli space of coupling constants. These considerations provide additional evidence of the hidden group (integrable) structure behind the standard formalism of quantum field theory.

2011 ◽  
Vol 26 (17) ◽  
pp. 2913-2925 ◽  
Author(s):  
ABOUZEID M. SHALABY

In this work, we investigate a very important but unstressed result in the work of C. M. Bender, J.-H. Chen, and K. A. Milton, J. Phys. A39, 1657 (2006). These authors have calculated the vacuum energy of the iϕ3 scalar field theory and its Hermitian equivalent theory up to g4 order of calculations. While all the Feynman diagrams of the iϕ3 theory are finite in 0+1 space–time dimensions, some of the corresponding Feynman diagrams in the equivalent Hermitian theory are divergent. In this work, we show that the divergences in the Hermitian theory originate from superrenormalizable, renormalizable and nonrenormalizable terms in the interaction Hamiltonian even though the calculations are carried out in the 0+1 space–time dimensions. Relying on this interesting result, we raise a question: Is the superficial degree of divergence of a theory is representation dependent? To answer this question, we introduce and study a class of non-Hermitian quantum field theories characterized by a field derivative interaction Hamiltonian. We showed that the class is physically acceptable by finding the corresponding class of metric operators in a closed form. We realized that the obtained equivalent Hermitian and the introduced non-Hermitian representations have coupling constants of different mass dimensions which may be considered as a clue for the possibility of considering nonrenormalizability of a field theory as a nongenuine problem. Besides, the metric operator is supposed to disappear from path integral calculations which means that physical amplitudes can be fully obtained in the simpler non-Hermitian representation.


1999 ◽  
Vol 08 (02) ◽  
pp. 125-163 ◽  
Author(s):  
Louis Crane ◽  
David Yetter

We show that any 3D topological quantum field theory satisfying physically reasonable factorizability conditions has associated to it in a natural way a Hopf algebra object in a suitable tensor category. We also show that all objects in the tensor category have the structure of left-left crossed bimodules over the Hopf algebra object. For 4D factorizable topological quantum filed theories, we provide by analogous methods a construction of a Hopf algebra category.


2020 ◽  
pp. 289-318
Author(s):  
Giuseppe Mussardo

Chapter 8 introduces the key ideas of the renormalization group, including how they provide a theoretical scheme and a proper language to face critical phenomena. It covers the scaling transformations of a system and their implementations in the space of the coupling constants and reducing the degrees of freedom. From this analysis, the reader is led to the important notion of relevant, irrelevant and marginal operators and then to the universality of the critical phenomena. Furthermore, the chapter also covers (as regards the RG) transformation laws, effective Hamiltonians, the Gaussian model, the Ising model, operators of quantum field theory, universal ratios, critical exponents and β‎-functions.


2019 ◽  
Vol 107 (3) ◽  
pp. 392-411 ◽  
Author(s):  
YAJUN ZHOU

Let $p_{n}(x)=\int _{0}^{\infty }J_{0}(xt)[J_{0}(t)]^{n}xt\,dt$ be Kluyver’s probability density for $n$-step uniform random walks in the Euclidean plane. Through connection to a similar problem in two-dimensional quantum field theory, we evaluate the third-order derivative $p_{5}^{\prime \prime \prime }(0^{+})$ in closed form, thereby giving a new proof for a conjecture of J. M. Borwein. By further analogies to Feynman diagrams in quantum field theory, we demonstrate that $p_{n}(x),0\leq x\leq 1$ admits a uniformly convergent Maclaurin expansion for all odd integers $n\geq 5$, thus settling another conjecture of Borwein.


2013 ◽  
Vol 28 (35) ◽  
pp. 1350163 ◽  
Author(s):  
SERGIO GIARDINO ◽  
PAULO TEOTÔNIO-SOBRINHO

A nonassociative Groenewold–Moyal (GM) plane is constructed using quaternion-valued function algebras. The symmetrized multiparticle states, the scalar product, the annihilation/creation algebra and the formulation in terms of a Hopf algebra are also developed. Nonassociative quantum algebras in terms of position and momentum operators are given as the simplest examples of a framework whose applications may involve string theory and nonlinear quantum field theory.


2020 ◽  
Vol 35 (13) ◽  
pp. 2050063
Author(s):  
Maxim A. Bezuglov

In modern quantum field theory, one of the most important tasks is the calculation of loop integrals. Loop integrals appear when evaluating the Feynman diagrams with one or more loops by integrating over the internal momenta. Even though this problem has already been in place since the mid-twentieth century, we not only do not understand how to calculate all classes of these integrals beyond one loop, we do not even know in what class of functions the answer is expressed. To partially solve this problem, different variations of new functions usually called elliptic multiple polylogarithms have been introduced in the last decade. In this paper, we explore the possibilities and limitations of this class of functions. As a practical example, we chose the processes associated with the physics of heavy quarkonium at the two-loop level.


Sign in / Sign up

Export Citation Format

Share Document