BUNDLES OF LIE ALGEBRAS AND COMPATIBLE POISSON BRACKETS

2002 ◽  
Vol 17 (06n07) ◽  
pp. 946-950
Author(s):  
A. B. YANOVSKI

We consider the mechanism of obtaining compatible Poisson-Lie tensors, based on the existence of some special algebraic structures - families of Lie brackets defined on one and the same space.

Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 601
Author(s):  
Orest Artemovych ◽  
Alexander Balinsky ◽  
Denis Blackmore ◽  
Anatolij Prykarpatski

The Lie algebraic scheme for constructing Hamiltonian operators is differential-algebraically recast and an effective approach is devised for classifying the underlying algebraic structures of integrable Hamiltonian systems. Lie–Poisson analysis on the adjoint space to toroidal loop Lie algebras is employed to construct new reduced pre-Lie algebraic structures in which the corresponding Hamiltonian operators exist and generate integrable dynamical systems. It is also shown that the Balinsky–Novikov type algebraic structures, obtained as a Hamiltonicity condition, are derivations on the Lie algebras naturally associated with differential toroidal loop algebras. We study nonassociative and noncommutive algebras and the related Lie-algebraic symmetry structures on the multidimensional torus, generating via the Adler–Kostant–Symes scheme multi-component and multi-dimensional Hamiltonian operators. In the case of multidimensional torus, we have constructed a new weak Balinsky–Novikov type algebra, which is instrumental for describing integrable multidimensional and multicomponent heavenly type equations. We have also studied the current algebra symmetry structures, related with a new weakly deformed Balinsky–Novikov type algebra on the axis, which is instrumental for describing integrable multicomponent dynamical systems on functional manifolds. Moreover, using the non-associative and associative left-symmetric pre-Lie algebra theory of Zelmanov, we also explicate Balinsky–Novikov algebras, including their fermionic version and related multiplicative and Lie structures.


2020 ◽  
Vol 31 (07) ◽  
pp. 2050051
Author(s):  
Andreas Kollross

Using octonions and the triality property of Spin(8), we find explicit formulae for the Lie brackets of the exceptional simple real Lie algebras [Formula: see text] and [Formula: see text], i.e. the Lie algebras of the isometry groups of the Cayley projective plane and the Cayley hyperbolic plane. As an application, we determine all polar actions on the Cayley hyperbolic plane which leave a totally geodesic subspace invariant.


1989 ◽  
Vol 17 (1) ◽  
pp. 25-29 ◽  
Author(s):  
A. P. Fordy ◽  
A. G. Reyman ◽  
M. A. Semenov-Tian-Shansky

Sign in / Sign up

Export Citation Format

Share Document