scholarly journals BIMAXIMAL MIXINGS FROM THE TEXTURE OF THE RIGHT-HANDED MAJORANA NEUTRINO MASS MATRIX

2002 ◽  
Vol 17 (25) ◽  
pp. 3629-3640 ◽  
Author(s):  
N. NIMAI SINGH ◽  
MAHADEV PATGIRI

We study the origin of neutrino masses and mixing angles which can accommodate the LMA MSW solutions of the solar neutrino anomaly as well as the solution of the atmospheric neutrino problem, within the framework of the see-saw mechanism. We employ the diagonal form of the Dirac neutrino mass matrices with the physical masses as diagonal elements in the hierarchical order. Such a choice has been motivated from the fact that the known CKM angles for the quark sector, are relatively small. We consider both possibilities where the Dirac neutrino mass matrix is either the charged lepton or the up-quark mass matrix within the framework of SO(10) GUT with or without supersymmetry. The nonzero texture of the right-handed Majorana neutrino mass matrix M R is used for the generation of the desired bimaximal mixings in a model independent way. Both hierarchical and inverted hierarchical models of the left-handed Majorana neutrino mass matrices are generated and then discussed with examples. The see-saw mass scale which is kept as a free parameter, is predicted in all the examples.

2003 ◽  
Vol 18 (05) ◽  
pp. 743-753 ◽  
Author(s):  
MAHADEV PATGIRI ◽  
N. NIMAI SINGH

An attempt is made to generate the bimaximal mixings of the three species of neutrinos from the textures of the right-handed Majorana neutrino mass matrices. We extend our earlier work in this paper for the generation of the nearly degenerate as well as the inverted hierarchical models of the left-handed Majorana neutrino mass matrices using the non-diagonal textures of the right-handed Majorana neutrino mass matrices and the diagonal form of Dirac neutrino mass matrices, within the framework of the see-saw mechanism in a model independent way. Such Majorana neutrino mass models are important in explaining the recently reported result on the neutrinoless double beta decay (0νββ) experiment, together with the earlier established data on LMA MSW solar and atmospheric neutrino oscillations.


2006 ◽  
Vol 21 (25) ◽  
pp. 1917-1921 ◽  
Author(s):  
ERNEST MA

The discrete subgroup Δ(27) of SU(3) has some interesting properties which may be useful for understanding charged-lepton and neutrino mass matrices. Assigning leptons to the 3 and [Formula: see text] representations of Δ(27), a simple form of the Majorana neutrino mass matrix is obtained and compared to present data.


1999 ◽  
Vol 14 (24) ◽  
pp. 1625-1635
Author(s):  
K. KIMURA ◽  
A. TAKAMURA

Under the assumption that the neutrinos are Majorana particles we study how the lepton mass matrices can be transformed into the simple form which has the same physical quantities by removing redundant parameters. We propose the exact parametrization of the lepton mass matrices which reflects the small νe-νμ mixing and the large νμ-ντ mixing. The relations between the 12 parameters and the physical quantities are shown. Furthermore we calculate the MNS matrix by applying the assumptions used in the quark sector. Finally we also check the validity of these assumptions from the experimental values.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Madan Singh

We have studied that the implication of a large value of the effective Majorana neutrino mass in case of neutrino mass matrices has either two equal elements and one zero element (popularly known as hybrid texture) or two equal cofactors and one zero minor (popularly known as inverse hybrid texture) in the flavor basis. In each of these cases, four out of sixty phenomenologically possible patterns predict near maximal atmospheric neutrino mixing angle in the limit of large effective Majorana neutrino mass. This feature remains irrespective of the experimental data on solar and reactor mixing angles. In addition, we have also performed the comparative study of all the viable cases of hybrid and inverse hybrid textures at 3σ CL.


2011 ◽  
Vol 26 (07) ◽  
pp. 501-514 ◽  
Author(s):  
S. DEV ◽  
SHIVANI GUPTA ◽  
RADHA RAMAN GAUTAM

We study the existence of one/two texture zeros or one/two vanishing minors in the neutrino mass matrix with μτ symmetry. In the basis where the charged lepton mass matrix and the Dirac neutrino mass matrix are diagonal, the one/two zeros or one/two vanishing minors on the right-handed Majorana mass matrix having μτ symmetry will propagate via seesaw mechanism as one/two vanishing minors or one/two texture zeros in the neutrino mass matrix with μτ symmetry respectively. It is found that only five such texture structures of the neutrino mass matrix are phenomenologically viable. For tribimaximal mixing, these texture structures reduce the number of free parameters to one. Interesting predictions are obtained for the effective Majorana mass Mee, the absolute mass scale and the Majorana-type CP violating phases.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Madan Singh ◽  

Abstract We re-examine the weak basis invariants at low energies proposed by C. Jarlskog and Branco et al. in their earlier analyses, after confronting them with the assumptions of two zeros and an equality between arbitrary non-zero elements in the Majorana neutrino mass matrix in the flavored basis. This particular conjecture is found to be experimentally feasible, as shown by S. Dev and D. Raj in their recent work. The present analysis attempts to find the necessary and sufficient condition for CP invariance for each experimentally viable ansatz pertaining to the model, along with some important implications.


2017 ◽  
Vol 96 (5) ◽  
Author(s):  
Debasish Borah ◽  
Monojit Ghosh ◽  
Shivani Gupta ◽  
Sushant K. Raut

Sign in / Sign up

Export Citation Format

Share Document