BLOCH–NORDSIECK ESTIMATES OF A HIGH-TEMPERATURE SCALAR FIELD THEORY

2005 ◽  
Vol 20 (32) ◽  
pp. 7525-7546 ◽  
Author(s):  
B. CANDELPERGHER ◽  
H. M. FRIED ◽  
T. GRANDOU

In anticipation of subsequent application to QED and QCD, we consider the case of a model, high temperature, relativistic, scalar field theory. We introduce into the exact, nonperturbative, functional expressions of this "quenched" model, a new Fradkin representation, and extract the infrared/Bloch–Nordsieck/(IR/BN) contributions of every perturbative graph, in order to circumvent the lack of a clear-cut separation of energy scales of previous semiperturbative treatments. Our results are applicable to the absorption of a fast particle which enters a heat bath, as well as to the propagation of a symmetric pulse within the thermal medium due to the appearance of an instantaneous, shockwave-like source acting in the medium. In momentum space, the former case displays a propagator which decays exponentially with increasing time, in addition to a new damping factor independent of time. The latter case displays an exponential growth with time of the symmetric pulse, generating effective and increasing plasmon waves, in competition with damping independent of time. When extended to QCD, qualitative applications could be made to RHIC scattering, in which a fireball appears, expands and is damped away.

2000 ◽  
Vol 579 (1-2) ◽  
pp. 379-410 ◽  
Author(s):  
Alberto Frizzo ◽  
Lorenzo Magnea ◽  
Rodolfo Russo

2011 ◽  
Author(s):  
Angel A. García-Chung ◽  
Hugo A. Morales-Técotl ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
...  

1998 ◽  
Vol 13 (31) ◽  
pp. 2495-2501 ◽  
Author(s):  
KURT LANGFELD ◽  
HUGO REINHARDT

A scalar field theory in four space–time dimensions is proposed, which embodies a scalar condensate, but is free of the conceptual problems of standard ϕ4-theory. We propose an N-component, O(N)-symmetric scalar field theory, which is originally defined on the lattice. The scalar lattice model is analytically solved in the large-N limit. The continuum limit is approached via an asymptotically free scaling. The renormalized theory evades triviality, and furthermore gives rise to a dynamically formed mass of the scalar particle. The model might serve as an alternative to the Higgs sector of the standard model, where the quantum level of the standard ϕ4-theory contradicts phenomenology due to triviality.


Sign in / Sign up

Export Citation Format

Share Document