scholarly journals HEAVY-QUARKONIUM PRODUCTION AT NEXT-TO-LEADING ORDER

2006 ◽  
Vol 21 (04) ◽  
pp. 793-798
Author(s):  
BERND A. KNIEHL

We review recent progress in the description of heavy-quarkonium production in 2 → 2 processes at next-to-leading order in the factorization framework of nonrelativistic quantum chromodynamics. Specifically, we consider the production of prompt charmonium in association with a hadron jet or a prompt photon in two-photon collisions and exclusive double-charmonium production in e+e- annihilation.

2005 ◽  
Vol 71 (1) ◽  
Author(s):  
Michael Klasen ◽  
Bernd A. Kniehl ◽  
Luminiţa N. Mihaila ◽  
Matthias Steinhauser

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Kyle Lee ◽  
George Sterman

Abstract We study heavy quarkonium production associated with gluons in e+e− annihilation as an illustration of the perturbative QCD (pQCD) factorization approach, which incorporates the first nonleading power in the energy of the produced heavy quark pair. We show how the renormalization of the four-quark operators that define the heavy quark pair fragmentation functions using dimensional regularization induces “evanescent” operators that are absent in four dimensions. We derive closed forms for short-distance coefficients for quark pair production to next-to-leading order ($$ {\alpha}_s^2 $$ α s 2 ) in the relevant color singlet and octet channels. Using non-relativistic QCD (NRQCD) to calculate the heavy quark pair fragmentation functions up to v4 in the velocity expansion, we derive analytical results for the differential energy fraction distribution of the heavy quarkonium. Calculations for $$ {}^3{S}_1^{\left[1\right]} $$ 3 S 1 1 and $$ {}^1{S}_0^{\left[8\right]} $$ 1 S 0 8 channels agree with analogous NRQCD analytical results available in the literature, while several color-octet calculations of energy fraction distributions are new. We show that the remaining corrections due to the heavy quark mass fall off rapidly in the energy of the produced state. To explore the importance of evolution at energies much larger than the mass of the heavy quark, we solve the renormalization group equation perturbatively to two-loop order for the $$ {}^1{S}_0^{\left[8\right]} $$ 1 S 0 8 case.


2021 ◽  
Vol 36 (09) ◽  
pp. 2150058
Author(s):  
A. V. Luchinsky ◽  
A. K. Likhoded

In this paper, production of charmonium state [Formula: see text] in exclusive [Formula: see text] decays is analyzed in the framework of both leading order Non-relativistic Quantum Chromodynamics (NRQCD) and light-cone (LC) expansion models. Analytical and numerical predictions for the branching fractions of these decays in both the approaches are given. The typical value of the branching fractions is [Formula: see text][Formula: see text][Formula: see text] and it turns out that the LC results are significantly larger than NRQCD ones (approximately two or four times increase depending on the quantum numbers of the final particles), so the effect of internal quark motion should be taken into account. Some rough estimates of color-octet contributions are presented and it is shown that these contributions could be comparable with color-singlet results.


2012 ◽  
Vol 86 (1) ◽  
Author(s):  
Qi-Li Liao ◽  
Xing-Gang Wu ◽  
Jun Jiang ◽  
Zhi Yang ◽  
Zhen-Yun Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document